/**************************************************************************** * drivers/mtd/sst25xx.c * * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. The * ASF licenses this file to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance with the * License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * ****************************************************************************/ /**************************************************************************** * Included Files ****************************************************************************/ #include #include #include #include #include #include #include #include #include #include #include #include #include #include /**************************************************************************** * Pre-processor Definitions ****************************************************************************/ /* Configuration ************************************************************/ /* Per the data sheet, SST25 parts can be driven with either SPI mode 0 * (CPOL=0 and CPHA=0) or mode 3 (CPOL=1 and CPHA=1). So you may need to * specify CONFIG_SST25XX_SPIMODE to select the best mode for your device. * If CONFIG_SST25XX_SPIMODE is not defined, mode 0 will be used. */ #ifndef CONFIG_SST25XX_SPIMODE # define CONFIG_SST25XX_SPIMODE SPIDEV_MODE0 #endif /* SPI Frequency. May be up to 25MHz. */ #ifndef CONFIG_SST25XX_SPIFREQUENCY # define CONFIG_SST25XX_SPIFREQUENCY 20000000 #endif /* Various manufacturers may have produced the parts. 0xBF is the * manufacturer ID for the SST serial FLASH. */ #ifndef CONFIG_SST25XX_MANUFACTURER # define CONFIG_SST25XX_MANUFACTURER 0xBF #endif #ifndef CONFIG_SST25XX_MEMORY_TYPE # define CONFIG_SST25XX_MEMORY_TYPE 0x25 #endif /* SST25 Registers **********************************************************/ /* Identification register values */ #define SST25_MANUFACTURER CONFIG_SST25XX_MANUFACTURER #define SST25_MEMORY_TYPE CONFIG_SST25XX_MEMORY_TYPE #define SST25_SST25064_CAPACITY 0x4b /* 64 M-bit */ /* SST25064 capacity is 8,388,608 bytes: * (2,0548 sectors) * (4,096 bytes per sector) * (32,768 pages) * (256 bytes per page) */ #define SST25_SST25064_SECTOR_SHIFT 12 /* Sector size 1 << 15 = 65,536 */ #define SST25_SST25064_NSECTORS 2048 #define SST25_SST25064_PAGE_SHIFT 8 /* Page size 1 << 8 = 256 */ #define SST25_SST25064_NPAGES 32768 /* Instructions */ /* Command Value N Description Addr Dummy Data */ #define SST25_WREN 0x06 /* 1 Write Enable 0 0 0 */ #define SST25_WRDI 0x04 /* 1 Write Disable 0 0 0 */ #define SST25_RDID 0x9f /* 1 Read Identification 0 0 1-3 */ #define SST25_RDSR 0x05 /* 1 Read Status Register 0 0 >=1 */ #define SST25_EWSR 0x50 /* 1 Write enable status 0 0 0 */ #define SST25_WRSR 0x01 /* 1 Write Status Register 0 0 1 */ #define SST25_READ 0x03 /* 1 Read Data Bytes 3 0 >=1 */ #define SST25_FAST_READ 0x0b /* 1 Higher speed read 3 1 >=1 */ #define SST25_PP 0x02 /* 1 Page Program 3 0 1-256 */ #define SST25_SE 0x20 /* 1 Sector Erase 3 0 0 */ #define SST25_BE32 0x52 /* 2 32K Block Erase 3 0 0 */ #define SST25_BE64 0xD8 /* 2 64K Block Erase 3 0 0 */ #define SST25_BE 0xc7 /* 1 Bulk Erase 0 0 0 */ #define SST25_RES 0xab /* 1 Read Electronic Signature 0 3 >=1 */ /* NOTE 1: All parts. * NOTE 2: In SST25064 terminology, 0x52 and 0xd8 are block erase and 0x20 * is a sector erase. Block erase provides a faster way to erase * multiple 4K sectors at once. */ /* Status register bit definitions */ #define SST25_SR_WIP (1 << 0) /* Bit 0: Write in progress bit */ #define SST25_SR_WEL (1 << 1) /* Bit 1: Write enable latch bit */ #define SST25_SR_BP_SHIFT (2) /* Bits 2-5: Block protect bits */ #define SST25_SR_BP_MASK (15 << SST25_SR_BP_SHIFT) # define SST25_SR_BP_NONE (0 << SST25_SR_BP_SHIFT) /* Unprotected */ # define SST25_SR_BP_UPPER128th (1 << SST25_SR_BP_SHIFT) /* Upper 128th */ # define SST25_SR_BP_UPPER64th (2 << SST25_SR_BP_SHIFT) /* Upper 64th */ # define SST25_SR_BP_UPPER32nd (3 << SST25_SR_BP_SHIFT) /* Upper 32nd */ # define SST25_SR_BP_UPPER16th (4 << SST25_SR_BP_SHIFT) /* Upper 16th */ # define SST25_SR_BP_UPPER8th (5 << SST25_SR_BP_SHIFT) /* Upper 8th */ # define SST25_SR_BP_UPPERQTR (6 << SST25_SR_BP_SHIFT) /* Upper quarter */ # define SST25_SR_BP_UPPERHALF (7 << SST25_SR_BP_SHIFT) /* Upper half */ # define SST25_SR_BP_ALL (8 << SST25_SR_BP_SHIFT) /* All sectors */ #define SST_SR_SEC (1 << 6) /* Security ID status */ #define SST25_SR_SRWD (1 << 7) /* Bit 7: Status register write protect */ #define SST25_DUMMY 0xa5 /**************************************************************************** * Private Types ****************************************************************************/ /* This type represents the state of the MTD device. The struct mtd_dev_s * must appear at the beginning of the definition so that you can freely * cast between pointers to struct mtd_dev_s and struct sst25xx_dev_s. */ struct sst25xx_dev_s { struct mtd_dev_s mtd; /* MTD interface */ FAR struct spi_dev_s *dev; /* Saved SPI interface instance */ uint8_t sectorshift; /* 16 or 18 */ uint8_t pageshift; /* 8 */ uint16_t nsectors; /* 128 or 64 */ uint32_t npages; /* 32,768 or 65,536 */ uint8_t lastwaswrite; /* Indicates if last operation was write */ }; /**************************************************************************** * Private Function Prototypes ****************************************************************************/ /* Helpers */ static void sst25xx_lock(FAR struct spi_dev_s *dev); static inline void sst25xx_unlock(FAR struct spi_dev_s *dev); static inline int sst25xx_readid(struct sst25xx_dev_s *priv); static void sst25xx_waitwritecomplete(struct sst25xx_dev_s *priv); static void sst25xx_writeenable(struct sst25xx_dev_s *priv); static inline void sst25xx_sectorerase(struct sst25xx_dev_s *priv, off_t offset, uint8_t type); static inline int sst25xx_bulkerase(struct sst25xx_dev_s *priv); static inline void sst25xx_pagewrite(struct sst25xx_dev_s *priv, FAR const uint8_t *buffer, off_t offset); /* MTD driver methods */ static int sst25xx_erase(FAR struct mtd_dev_s *dev, off_t startblock, size_t nblocks); static ssize_t sst25xx_bread(FAR struct mtd_dev_s *dev, off_t startblock, size_t nblocks, FAR uint8_t *buf); static ssize_t sst25xx_bwrite(FAR struct mtd_dev_s *dev, off_t startblock, size_t nblocks, FAR const uint8_t *buf); static ssize_t sst25xx_read(FAR struct mtd_dev_s *dev, off_t offset, size_t nbytes, FAR uint8_t *buffer); #ifdef CONFIG_MTD_BYTE_WRITE static ssize_t sst25xx_write(FAR struct mtd_dev_s *dev, off_t offset, size_t nbytes, FAR const uint8_t *buffer); #endif static int sst25xx_ioctl(FAR struct mtd_dev_s *dev, int cmd, unsigned long arg); /**************************************************************************** * Private Data ****************************************************************************/ /**************************************************************************** * Private Functions ****************************************************************************/ /**************************************************************************** * Name: sst25xx_lock ****************************************************************************/ static void sst25xx_lock(FAR struct spi_dev_s *dev) { /* On SPI buses where there are multiple devices, it will be necessary to * lock SPI to have exclusive access to the buses for a sequence of * transfers. The bus should be locked before the chip is selected. * * This is a blocking call and will not return until we have exclusive * access to the SPI bus. We will retain that exclusive access until * the bus is unlocked. */ SPI_LOCK(dev, true); /* After locking the SPI bus, the we also need call the setfrequency, * setbits, and setmode methods to make sure that the SPI is properly * configured for the device. * If the SPI bus is being shared, then it may have been left in an * incompatible state. */ SPI_SETMODE(dev, CONFIG_SST25XX_SPIMODE); SPI_SETBITS(dev, 8); SPI_HWFEATURES(dev, 0); SPI_SETFREQUENCY(dev, CONFIG_SST25XX_SPIFREQUENCY); } /**************************************************************************** * Name: sst25xx_unlock ****************************************************************************/ static inline void sst25xx_unlock(FAR struct spi_dev_s *dev) { SPI_LOCK(dev, false); } /**************************************************************************** * Name: sst25xx_readid ****************************************************************************/ static inline int sst25xx_readid(struct sst25xx_dev_s *priv) { uint16_t manufacturer; uint16_t memory; uint16_t capacity; finfo("priv: %p\n", priv); /* Lock the SPI bus, configure the bus, and select this FLASH part. */ sst25xx_lock(priv->dev); SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true); /* Send the "Read ID (RDID)" command and read the first three ID bytes */ SPI_SEND(priv->dev, SST25_RDID); SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true); manufacturer = SPI_SEND(priv->dev, SST25_DUMMY); memory = SPI_SEND(priv->dev, SST25_DUMMY); capacity = SPI_SEND(priv->dev, SST25_DUMMY); /* Deselect the FLASH and unlock the bus */ SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false); sst25xx_unlock(priv->dev); finfo("manufacturer: %02x memory: %02x capacity: %02x\n", manufacturer, memory, capacity); /* Check for a valid manufacturer and memory type */ if (manufacturer == SST25_MANUFACTURER && memory == SST25_MEMORY_TYPE) { /* Okay.. is it a FLASH capacity that we understand? */ if (capacity == SST25_SST25064_CAPACITY) { /* Save the FLASH geometry */ priv->sectorshift = SST25_SST25064_SECTOR_SHIFT; priv->nsectors = SST25_SST25064_NSECTORS; priv->pageshift = SST25_SST25064_PAGE_SHIFT; priv->npages = SST25_SST25064_NPAGES; return OK; } } return -ENODEV; } /**************************************************************************** * Name: sst25xx_waitwritecomplete ****************************************************************************/ static void sst25xx_waitwritecomplete(struct sst25xx_dev_s *priv) { uint8_t status; /* No need to check if no write / erase was done */ #if 0 if (!priv->lastwaswrite) { return; } #endif /* Loop as long as the memory is busy with a write cycle */ do { /* Select this FLASH part */ SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true); /* Send "Read Status Register (RDSR)" command */ SPI_SEND(priv->dev, SST25_RDSR); /* Send a dummy byte to generate the clock needed to shift out the * status */ status = SPI_SEND(priv->dev, SST25_DUMMY); /* Deselect the FLASH */ SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false); /* Given that writing could take up to few tens of milliseconds, and * erasing could take more. The following short delay in the "busy" * case will allow other peripherals to access the SPI bus. */ if ((status & SST25_SR_WIP) != 0) { sst25xx_unlock(priv->dev); nxsig_usleep(1000); sst25xx_lock(priv->dev); } } while ((status & SST25_SR_WIP) != 0); priv->lastwaswrite = false; finfo("Complete\n"); } /**************************************************************************** * Name: sst25xx_writeenable ****************************************************************************/ static void sst25xx_writeenable(struct sst25xx_dev_s *priv) { /* Select this FLASH part */ SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true); /* Send "Write Enable (WREN)" command */ SPI_SEND(priv->dev, SST25_WREN); /* Deselect the FLASH */ SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false); finfo("Enabled\n"); } /**************************************************************************** * Name: sst25xx_unprotect ****************************************************************************/ static void sst25xx_unprotect(struct sst25xx_dev_s *priv) { /* Send "Write enable status (EWSR)" */ SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true); SPI_SEND(priv->dev, SST25_EWSR); /* Deselect the FLASH */ SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false); /* Send "Write status (WRSR)" */ SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true); SPI_SEND(priv->dev, SST25_WRSR); /* Followed by the new status value */ SPI_SEND(priv->dev, 0); SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false); } /**************************************************************************** * Name: sst25xx_sectorerase ****************************************************************************/ static void sst25xx_sectorerase(struct sst25xx_dev_s *priv, off_t sector, uint8_t type) { off_t offset; offset = sector << priv->sectorshift; finfo("sector: %08lx\n", (long)sector); /* Wait for any preceding write to complete. We could simplify things by * perform this wait at the end of each write operation (rather than at * the beginning of ALL operations), but have the wait first will slightly * improve performance. */ sst25xx_waitwritecomplete(priv); /* Send write enable instruction */ sst25xx_writeenable(priv); /* Select this FLASH part */ SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true); /* Send the "Sector Erase (SE)" or Sub-Sector Erase (SSE) instruction * that was passed in as the erase type. */ SPI_SEND(priv->dev, type); /* Send the sector offset high byte first. For all of the supported * parts, the sector number is completely contained in the first byte * and the values used in the following two bytes don't really matter. */ SPI_SEND(priv->dev, (offset >> 16) & 0xff); SPI_SEND(priv->dev, (offset >> 8) & 0xff); SPI_SEND(priv->dev, offset & 0xff); priv->lastwaswrite = true; /* Deselect the FLASH */ SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false); finfo("Erased\n"); } /**************************************************************************** * Name: sst25xx_bulkerase ****************************************************************************/ static inline int sst25xx_bulkerase(struct sst25xx_dev_s *priv) { finfo("priv: %p\n", priv); /* Wait for any preceding write to complete. We could simplify things by * perform this wait at the end of each write operation (rather than at * the beginning of ALL operations), but have the wait first will slightly * improve performance. */ sst25xx_waitwritecomplete(priv); /* Send write enable instruction */ sst25xx_writeenable(priv); /* Select this FLASH part */ SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true); /* Send the "Bulk Erase (BE)" instruction */ SPI_SEND(priv->dev, SST25_BE); /* Deselect the FLASH */ SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false); sst25xx_waitwritecomplete(priv); finfo("Return: OK\n"); return OK; } /**************************************************************************** * Name: sst25xx_pagewrite ****************************************************************************/ static inline void sst25xx_pagewrite(struct sst25xx_dev_s *priv, FAR const uint8_t *buffer, off_t page) { off_t offset = page << priv->pageshift; finfo("page: %08lx offset: %08lx\n", (long)page, (long)offset); /* Wait for any preceding write to complete. We could simplify things by * perform this wait at the end of each write operation (rather than at * the beginning of ALL operations), but have the wait first will slightly * improve performance. */ sst25xx_waitwritecomplete(priv); /* Enable the write access to the FLASH */ sst25xx_writeenable(priv); /* Select this FLASH part */ SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true); /* Send "Page Program (PP)" command */ SPI_SEND(priv->dev, SST25_PP); /* Send the page offset high byte first. */ SPI_SEND(priv->dev, (offset >> 16) & 0xff); SPI_SEND(priv->dev, (offset >> 8) & 0xff); SPI_SEND(priv->dev, offset & 0xff); /* Then write the specified number of bytes */ SPI_SNDBLOCK(priv->dev, buffer, 1 << priv->pageshift); priv->lastwaswrite = true; /* Deselect the FLASH: Chip Select high */ SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false); finfo("Written\n"); } /**************************************************************************** * Name: sst25xx_bytewrite ****************************************************************************/ #ifdef CONFIG_MTD_BYTE_WRITE static inline void sst25xx_bytewrite(struct sst25xx_dev_s *priv, FAR const uint8_t *buffer, off_t offset, uint16_t count) { finfo("offset: %08lx count:%d\n", (long)offset, count); /* Wait for any preceding write to complete. We could simplify things by * perform this wait at the end of each write operation (rather than at * the beginning of ALL operations), but have the wait first will slightly * improve performance. */ sst25xx_waitwritecomplete(priv); /* Enable the write access to the FLASH */ sst25xx_writeenable(priv); /* Select this FLASH part */ SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true); /* Send "Page Program (PP)" command */ SPI_SEND(priv->dev, SST25_PP); /* Send the page offset high byte first. */ SPI_SEND(priv->dev, (offset >> 16) & 0xff); SPI_SEND(priv->dev, (offset >> 8) & 0xff); SPI_SEND(priv->dev, offset & 0xff); /* Then write the specified number of bytes */ SPI_SNDBLOCK(priv->dev, buffer, count); priv->lastwaswrite = true; /* Deselect the FLASH: Chip Select high */ SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false); finfo("Written\n"); } #endif /**************************************************************************** * Name: sst25xx_erase ****************************************************************************/ static int sst25xx_erase(FAR struct mtd_dev_s *dev, off_t startblock, size_t nblocks) { FAR struct sst25xx_dev_s *priv = (FAR struct sst25xx_dev_s *)dev; size_t blocksleft = nblocks; finfo("startblock: %08lx nblocks: %d\n", (long)startblock, (int)nblocks); /* Lock access to the SPI bus until we complete the erase */ sst25xx_lock(priv->dev); while (blocksleft > 0) { size_t sectorboundry; size_t blkper; /* We will erase in either 4K sectors or 32K or 64K blocks depending * on the largest unit we can use given the startblock and nblocks. * This will reduce erase time (in the event we have partitions * enabled and are doing a bulk erase which is translated into * a block erase operation). */ /* Test for 64K alignment */ blkper = 64 / 4; sectorboundry = (startblock + blkper - 1) / blkper; sectorboundry *= blkper; /* If we are on a sector boundary and have at least a full sector * of blocks left to erase, then we can do a full sector erase. */ if (startblock == sectorboundry && blocksleft >= blkper) { /* Do a 64k block erase */ sst25xx_sectorerase(priv, startblock, SST25_BE64); startblock += blkper; blocksleft -= blkper; continue; } /* Test for 32K block alignment */ blkper = 32 / 4; sectorboundry = (startblock + blkper - 1) / blkper; sectorboundry *= blkper; if (startblock == sectorboundry && blocksleft >= blkper) { /* Do a 32k block erase */ sst25xx_sectorerase(priv, startblock, SST25_BE32); startblock += blkper; blocksleft -= blkper; continue; } else { /* Just do a sector erase */ sst25xx_sectorerase(priv, startblock, SST25_SE); startblock++; blocksleft--; continue; } } sst25xx_unlock(priv->dev); return (int)nblocks; } /**************************************************************************** * Name: sst25xx_bread ****************************************************************************/ static ssize_t sst25xx_bread(FAR struct mtd_dev_s *dev, off_t startblock, size_t nblocks, FAR uint8_t *buffer) { FAR struct sst25xx_dev_s *priv = (FAR struct sst25xx_dev_s *)dev; ssize_t nbytes; finfo("startblock: %08lx nblocks: %d\n", (long)startblock, (int)nblocks); /* On this device, we can handle the block read just like the * byte-oriented read */ nbytes = sst25xx_read(dev, startblock << priv->pageshift, nblocks << priv->pageshift, buffer); if (nbytes > 0) { return nbytes >> priv->pageshift; } return (int)nbytes; } /**************************************************************************** * Name: sst25xx_bwrite ****************************************************************************/ static ssize_t sst25xx_bwrite(FAR struct mtd_dev_s *dev, off_t startblock, size_t nblocks, FAR const uint8_t *buffer) { FAR struct sst25xx_dev_s *priv = (FAR struct sst25xx_dev_s *)dev; size_t blocksleft = nblocks; size_t pagesize = 1 << priv->pageshift; finfo("startblock: %08lx nblocks: %d\n", (long)startblock, (int)nblocks); /* Lock the SPI bus and write each page to FLASH */ sst25xx_lock(priv->dev); while (blocksleft-- > 0) { sst25xx_pagewrite(priv, buffer, startblock); buffer += pagesize; startblock++; } sst25xx_unlock(priv->dev); return nblocks; } /**************************************************************************** * Name: sst25xx_read ****************************************************************************/ static ssize_t sst25xx_read(FAR struct mtd_dev_s *dev, off_t offset, size_t nbytes, FAR uint8_t *buffer) { FAR struct sst25xx_dev_s *priv = (FAR struct sst25xx_dev_s *)dev; finfo("offset: %08lx nbytes: %d\n", (long)offset, (int)nbytes); /* Lock the SPI bus NOW because the following conditional call to * sst25xx_waitwritecomplete must be executed with the bus locked. */ sst25xx_lock(priv->dev); /* Wait for any preceding write to complete. We could simplify things by * perform this wait at the end of each write operation (rather than at * the beginning of ALL operations), but have the wait first will slightly * improve performance. */ if (priv->lastwaswrite) { sst25xx_waitwritecomplete(priv); } /* Select this FLASH part */ SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true); /* Send "Read from Memory " instruction */ SPI_SEND(priv->dev, SST25_READ); /* Send the page offset high byte first. */ SPI_SEND(priv->dev, (offset >> 16) & 0xff); SPI_SEND(priv->dev, (offset >> 8) & 0xff); SPI_SEND(priv->dev, offset & 0xff); /* Then read all of the requested bytes */ SPI_RECVBLOCK(priv->dev, buffer, nbytes); /* Deselect the FLASH and unlock the SPI bus */ SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false); sst25xx_unlock(priv->dev); finfo("return nbytes: %d\n", (int)nbytes); return nbytes; } /**************************************************************************** * Name: sst25xx_write ****************************************************************************/ #ifdef CONFIG_MTD_BYTE_WRITE static ssize_t sst25xx_write(FAR struct mtd_dev_s *dev, off_t offset, size_t nbytes, FAR const uint8_t *buffer) { FAR struct sst25xx_dev_s *priv = (FAR struct sst25xx_dev_s *)dev; int startpage; int endpage; int count; int index; int pagesize; int bytestowrite; finfo("offset: %08lx nbytes: %d\n", (long)offset, (int)nbytes); /* We must test if the offset + count crosses one or more pages * and perform individual writes. The devices can only write in * page increments. */ startpage = offset / (1 << priv->pageshift); endpage = (offset + nbytes) / (1 << priv->pageshift); sst25xx_lock(priv->dev); if (startpage == endpage) { /* All bytes within one programmable page. Just do the write. */ sst25xx_bytewrite(priv, buffer, offset, nbytes); } else { /* Write the 1st partial-page */ count = nbytes; pagesize = (1 << priv->pageshift); bytestowrite = pagesize - (offset & (pagesize - 1)); sst25xx_bytewrite(priv, buffer, offset, bytestowrite); /* Update offset and count */ offset += bytestowrite; count -= bytestowrite; index = bytestowrite; /* Write full pages */ while (count >= pagesize) { sst25xx_bytewrite(priv, &buffer[index], offset, pagesize); /* Update offset and count */ offset += pagesize; count -= pagesize; index += pagesize; } /* Now write any partial page at the end */ if (count > 0) { sst25xx_bytewrite(priv, &buffer[index], offset, count); } priv->lastwaswrite = true; } sst25xx_unlock(priv->dev); return nbytes; } #endif /* CONFIG_MTD_BYTE_WRITE */ /**************************************************************************** * Name: sst25xx_ioctl ****************************************************************************/ static int sst25xx_ioctl(FAR struct mtd_dev_s *dev, int cmd, unsigned long arg) { FAR struct sst25xx_dev_s *priv = (FAR struct sst25xx_dev_s *)dev; int ret = -EINVAL; /* Assume good command with bad parameters */ finfo("cmd: %d\n", cmd); switch (cmd) { case MTDIOC_GEOMETRY: { FAR struct mtd_geometry_s *geo = (FAR struct mtd_geometry_s *) ((uintptr_t)arg); if (geo) { /* Populate the geometry structure with information need to * know the capacity and how to access the device. * * NOTE: that the device is treated as though it where just * an array of fixed size blocks. That is most likely not * true, but the client will expect the device logic to do * whatever is necessary to make it appear so. */ geo->blocksize = (1 << priv->pageshift); geo->erasesize = (1 << priv->sectorshift); geo->neraseblocks = priv->nsectors; ret = OK; finfo("blocksize: %" PRId32 " erasesize: %" PRId32 " neraseblocks: %" PRId32 "\n", geo->blocksize, geo->erasesize, geo->neraseblocks); } } break; case BIOC_PARTINFO: { FAR struct partition_info_s *info = (FAR struct partition_info_s *)arg; if (info != NULL) { info->numsectors = priv->nsectors * (priv->sectorshift - priv->pageshift); info->sectorsize = 1 << priv->pageshift; info->startsector = 0; info->parent[0] = '\0'; ret = OK; } } break; case MTDIOC_BULKERASE: { /* Erase the entire device */ sst25xx_lock(priv->dev); ret = sst25xx_bulkerase(priv); sst25xx_unlock(priv->dev); } break; default: ret = -ENOTTY; /* Bad command */ break; } finfo("return %d\n", ret); return ret; } /**************************************************************************** * Public Functions ****************************************************************************/ /**************************************************************************** * Name: sst25xx_initialize * * Description: * Create an initialize MTD device instance. MTD devices are not * registered in the file system, but are created as instances that can * be bound to other functions (such as a block or character driver front * end). * ****************************************************************************/ FAR struct mtd_dev_s *sst25xx_initialize(FAR struct spi_dev_s *dev) { FAR struct sst25xx_dev_s *priv; int ret; finfo("dev: %p\n", dev); /* Allocate a state structure (we allocate the structure instead of using * a fixed, static allocation so that we can handle multiple FLASH devices. * The current implementation would handle only one FLASH part per SPI * device (only because of the SPIDEV_FLASH(0) definition) and so would * have to be extended to handle multiple FLASH parts on the same SPI bus. */ priv = (FAR struct sst25xx_dev_s *) kmm_zalloc(sizeof(struct sst25xx_dev_s)); if (priv) { /* Initialize the allocated structure. (unsupported methods were * nullified by kmm_zalloc). */ priv->mtd.erase = sst25xx_erase; priv->mtd.bread = sst25xx_bread; priv->mtd.bwrite = sst25xx_bwrite; priv->mtd.read = sst25xx_read; #ifdef CONFIG_MTD_BYTE_WRITE priv->mtd.write = sst25xx_write; #endif priv->mtd.ioctl = sst25xx_ioctl; priv->mtd.name = "sst25xx"; priv->dev = dev; priv->lastwaswrite = false; /* Deselect the FLASH */ SPI_SELECT(dev, SPIDEV_FLASH(0), false); /* Identify the FLASH chip and get its capacity */ ret = sst25xx_readid(priv); if (ret != OK) { /* Unrecognized! Discard all of that work we just did and return * NULL */ ferr("ERROR: Unrecognized\n"); kmm_free(priv); return NULL; } else { /* Make sure that the FLASH is unprotected so that we can write * into it */ sst25xx_unprotect(priv); } } /* Return the implementation-specific state structure as the MTD device */ finfo("Return %p\n", priv); return (FAR struct mtd_dev_s *)priv; }