/**************************************************************************** * include/nuttx/clock.h * * SPDX-License-Identifier: Apache-2.0 * * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. The * ASF licenses this file to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance with the * License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * ****************************************************************************/ #ifndef __INCLUDE_NUTTX_CLOCK_H #define __INCLUDE_NUTTX_CLOCK_H /**************************************************************************** * Included Files ****************************************************************************/ #include #include #include #include #include #include #include /**************************************************************************** * Pre-processor Definitions ****************************************************************************/ /* Configuration ************************************************************/ /* Efficient, direct access to OS global timer variables will be supported * if the execution environment has direct access to kernel global data. * The code in this execution context can access the kernel global data * directly if: * * 1. We are not running tick-less (in which case there is no global timer * data), * 2. This is an un-protected, non-kernel build, * 3. This is a protected build, but this code is being built for execution * within the kernel space. * 4. It we are building with SYSCALLs enabled, but not in a kernel build, * then we can't know a priori whether the code has access to the * global variables or not. In that case we have to assume not. */ #undef __HAVE_KERNEL_GLOBALS #if defined(CONFIG_SCHED_TICKLESS) /* Case 1: There is no global timer data */ #elif defined(__KERNEL__) /* Case 3: Kernel mode of protected/kernel build */ # define __HAVE_KERNEL_GLOBALS 1 #elif defined(CONFIG_LIB_SYSCALL) /* Case 4: Building with SYSCALLs enabled, but not part of a kernel build */ #else /* Case 2: Un-protected, non-kernel build */ # define __HAVE_KERNEL_GLOBALS 1 #endif /* If CONFIG_SYSTEM_TIME64 is selected and the CPU supports long long types, * then a 64-bit system time will be used. */ #ifndef CONFIG_HAVE_LONG_LONG # undef CONFIG_SYSTEM_TIME64 #endif /* The following are the bit fields of the clockid_t * bit 0~2: the clock type * CLOCK_REALTIME - 0 * CLOCK_MONOTONIC - 1 * CLOCK_PROCESS_CPUTIME_ID - 2 * CLOCK_THREAD_CPUTIME_ID - 3 * CLOCK_BOOTTIME - 4 * bit 3~32: the pid or tid value * * The CLOCK_MASK are using to extract the clock_type from the clockid_t */ #define CLOCK_MASK 7 #define CLOCK_SHIFT 3 /* Timing constants *********************************************************/ #define NSEC_PER_SEC 1000000000L /* Seconds */ #define USEC_PER_SEC 1000000L #define MSEC_PER_SEC 1000 #define DSEC_PER_SEC 10 #define HSEC_PER_SEC 2 #define NSEC_PER_HSEC 500000000L /* Half seconds */ #define USEC_PER_HSEC 500000L #define MSEC_PER_HSEC 500 #define DSEC_PER_HSEC 5 #define NSEC_PER_DSEC 100000000L /* Deciseconds */ #define USEC_PER_DSEC 100000L #define MSEC_PER_DSEC 100 #define NSEC_PER_MSEC 1000000L /* Milliseconds */ #define USEC_PER_MSEC 1000 #define NSEC_PER_USEC 1000 /* Microseconds */ #define SEC_PER_MIN 60 #define NSEC_PER_MIN (NSEC_PER_SEC * SEC_PER_MIN) #define USEC_PER_MIN (USEC_PER_SEC * SEC_PER_MIN) #define MSEC_PER_MIN (MSEC_PER_SEC * SEC_PER_MIN) #define DSEC_PER_MIN (DSEC_PER_SEC * SEC_PER_MIN) #define HSEC_PER_MIN (HSEC_PER_SEC * SEC_PER_MIN) #define MIN_PER_HOUR 60 #define NSEC_PER_HOUR (NSEC_PER_MIN * MIN_PER_HOUR) #define USEC_PER_HOUR (USEC_PER_MIN * MIN_PER_HOUR) #define MSEC_PER_HOUR (MSEC_PER_MIN * MIN_PER_HOUR) #define DSEC_PER_HOUR (DSEC_PER_MIN * MIN_PER_HOUR) #define HSEC_PER_HOUR (HSEC_PER_MIN * MIN_PER_HOUR) #define SEC_PER_HOUR (SEC_PER_MIN * MIN_PER_HOUR) #define HOURS_PER_DAY 24 #define SEC_PER_DAY (HOURS_PER_DAY * SEC_PER_HOUR) /* If CONFIG_SCHED_TICKLESS is not defined, then the interrupt interval of * the system timer is given by USEC_PER_TICK. This is the expected number * of microseconds between calls from the processor-specific logic to * nxsched_process_timer(). The default value of USEC_PER_TICK is 10000 * microseconds (100 Hz). However, this default setting can be overridden * by defining the interval in microseconds as CONFIG_USEC_PER_TICK in the * NuttX configuration file. * * The following calculations are only accurate when (1) there is no * truncation involved and (2) the underlying system timer is an even * multiple of microseconds. If (2) is not true, you will probably want * to redefine all of the following. */ #ifdef CONFIG_USEC_PER_TICK # define USEC_PER_TICK (CONFIG_USEC_PER_TICK) #else # define USEC_PER_TICK (10000) #endif /* MSEC_PER_TICK can be very inaccurate if CONFIG_USEC_PER_TICK is not an * even multiple of milliseconds. Calculations using USEC_PER_TICK are * preferred for that reason (at the risk of overflow) */ /* TICK_PER_* truncates! */ #define TICK_PER_HOUR (USEC_PER_HOUR / USEC_PER_TICK) #define TICK_PER_MIN (USEC_PER_MIN / USEC_PER_TICK) #define TICK_PER_SEC (USEC_PER_SEC / USEC_PER_TICK) #define TICK_PER_MSEC (USEC_PER_MSEC / USEC_PER_TICK) #define TICK_PER_DSEC (USEC_PER_DSEC / USEC_PER_TICK) #define TICK_PER_HSEC (USEC_PER_HSEC / USEC_PER_TICK) /* MSEC_PER_TICK truncates! */ #define MSEC_PER_TICK (USEC_PER_TICK / USEC_PER_MSEC) #define NSEC_PER_TICK (USEC_PER_TICK * NSEC_PER_USEC) /* ?SEC2TIC rounds up */ #define NSEC2TICK(nsec) div_const_roundup(nsec, NSEC_PER_TICK) #define USEC2TICK(usec) div_const_roundup(usec, USEC_PER_TICK) #if (MSEC_PER_TICK * USEC_PER_MSEC) == USEC_PER_TICK # define MSEC2TICK(msec) div_const_roundup(msec, MSEC_PER_TICK) #else # define MSEC2TICK(msec) USEC2TICK((msec) * USEC_PER_MSEC) #endif #define DSEC2TICK(dsec) MSEC2TICK((dsec) * MSEC_PER_DSEC) #define HSEC2TICK(dsec) MSEC2TICK((dsec) * MSEC_PER_HSEC) #define SEC2TICK(sec) MSEC2TICK((sec) * MSEC_PER_SEC) #define TICK2NSEC(tick) ((tick) * NSEC_PER_TICK) #define TICK2USEC(tick) ((tick) * USEC_PER_TICK) #if (MSEC_PER_TICK * USEC_PER_MSEC) == USEC_PER_TICK # define TICK2MSEC(tick) ((tick) * MSEC_PER_TICK) #else # define TICK2MSEC(tick) div_const(((tick) * USEC_PER_TICK), USEC_PER_MSEC) #endif /* TIC2?SEC rounds to nearest */ #define TICK2DSEC(tick) div_const_roundnearest(tick, TICK_PER_DSEC) #define TICK2HSEC(tick) div_const_roundnearest(tick, TICK_PER_HSEC) #define TICK2SEC(tick) div_const_roundnearest(tick, TICK_PER_SEC) /* MSEC2SEC */ #define MSEC2SEC(usec) div_const(msec, MSEC_PER_SEC) /* USEC2SEC */ #define USEC2SEC(usec) div_const(usec, USEC_PER_SEC) /* NSEC2USEC */ #define NSEC2USEC(nsec) div_const(nsec, NSEC_PER_USEC) /* NSEC2MSEC */ #define NSEC2MSEC(nsec) div_const(nsec, NSEC_PER_MSEC) #if defined(CONFIG_DEBUG_SCHED) && defined(CONFIG_SYSTEM_TIME64) && \ !defined(CONFIG_SCHED_TICKLESS) /* Initial system timer ticks value close to maximum 32-bit value, to test * 64-bit system-timer after going over 32-bit value. This is to make errors * of casting 64-bit system-timer to 32-bit variables more visible. */ # define INITIAL_SYSTEM_TIMER_TICKS \ ((uint64_t)(UINT32_MAX - (TICK_PER_SEC * 5))) #else # define INITIAL_SYSTEM_TIMER_TICKS 0 #endif /* If Gregorian time is not supported, then neither is Julian */ #ifndef CONFIG_GREGORIAN_TIME # undef CONFIG_JULIAN_TIME #else # define JD_OF_EPOCH 2440588 /* Julian Date of noon, J1970 */ # ifdef CONFIG_JULIAN_TIME # define GREG_DUTC -141427 /* Default is October 15, 1582 */ # define GREG_YEAR 1582 # define GREG_MONTH 10 # define GREG_DAY 15 # endif /* CONFIG_JULIAN_TIME */ #endif /* !CONFIG_GREGORIAN_TIME */ #define SECSPERMIN 60 #define MINSPERHOUR 60 #define HOURSPERDAY 24 #define DAYSPERWEEK 7 #define DAYSPERNYEAR 365 #define DAYSPERLYEAR 366 #define MONSPERYEAR 12 #define TM_SUNDAY 0 #define TM_MONDAY 1 #define TM_TUESDAY 2 #define TM_WEDNESDAY 3 #define TM_THURSDAY 4 #define TM_FRIDAY 5 #define TM_SATURDAY 6 #define TM_JANUARY 0 #define TM_FEBRUARY 1 #define TM_MARCH 2 #define TM_APRIL 3 #define TM_MAY 4 #define TM_JUNE 5 #define TM_JULY 6 #define TM_AUGUST 7 #define TM_SEPTEMBER 8 #define TM_OCTOBER 9 #define TM_NOVEMBER 10 #define TM_DECEMBER 11 #define TM_YEAR_BASE (1900) #define TM_WDAY_BASE TM_MONDAY #define EPOCH_YEAR 1970 #define EPOCH_WDAY TM_THURSDAY /**************************************************************************** * Public Types ****************************************************************************/ /* This structure is used to report CPU usage for a particular thread */ #ifndef CONFIG_SCHED_CPULOAD_NONE struct cpuload_s { volatile clock_t total; /* Total number of clock ticks */ volatile clock_t active; /* Number of ticks while this thread was active */ }; #endif /* This non-standard type used to hold relative clock ticks that may take * negative values. Because of its non-portable nature the type sclock_t * should be used only within the OS proper and not by portable applications. */ #ifdef CONFIG_SYSTEM_TIME64 typedef int64_t sclock_t; #else typedef int32_t sclock_t; #endif /**************************************************************************** * Public Data ****************************************************************************/ #ifdef __cplusplus #define EXTERN extern "C" extern "C" { #else #define EXTERN extern #endif /* Access to raw system clock ***********************************************/ /* Direct access to the system timer/counter is supported only if (1) the * system timer counter is available (i.e., we are not configured to use * a hardware periodic timer), and (2) the execution environment has direct * access to kernel global data */ #ifdef __HAVE_KERNEL_GLOBALS EXTERN volatile clock_t g_system_ticks; # ifndef CONFIG_SYSTEM_TIME64 # define clock_systime_ticks() g_system_ticks # endif #endif /**************************************************************************** * Public Function Prototypes ****************************************************************************/ #define clock_ticks2time(ts, tick) \ do \ { \ clock_t _tick = (clock_t)(tick); \ (ts)->tv_sec = (time_t)div_const(_tick, TICK_PER_SEC); \ _tick -= (clock_t)(ts)->tv_sec * TICK_PER_SEC; \ (ts)->tv_nsec = (long)_tick * NSEC_PER_TICK; \ } \ while (0) #define clock_time2ticks(ts) \ ((clock_t)(ts)->tv_sec * TICK_PER_SEC + NSEC2TICK((ts)->tv_nsec)) #define clock_usec2time(ts, usec) \ do \ { \ uint64_t _usec = (usec); \ (ts)->tv_sec = (time_t)div_const(_usec, USEC_PER_SEC); \ _usec -= (uint64_t)(ts)->tv_sec * USEC_PER_SEC; \ (ts)->tv_nsec = (long)_usec * NSEC_PER_USEC; \ } \ while (0) #define clock_time2usec(ts) \ ((uint64_t)(ts)->tv_sec * USEC_PER_SEC + div_const((ts)->tv_nsec, NSEC_PER_USEC)) #define clock_nsec2time(ts, nsec) \ do \ { \ uint64_t _nsec = (nsec); \ (ts)->tv_sec = (time_t)div_const(_nsec, NSEC_PER_SEC); \ _nsec -= (uint64_t)(ts)->tv_sec * NSEC_PER_SEC; \ (ts)->tv_nsec = (long)_nsec; \ } \ while (0) #define clock_time2nsec(ts) \ ((uint64_t)(ts)->tv_sec * NSEC_PER_SEC + (ts)->tv_nsec) /**************************************************************************** * Name: clock_timespec_add * * Description: * Add timespec ts1 to to2 and return the result in ts3 * * Input Parameters: * ts1 and ts2: The two timespecs to be added * t23: The location to return the result (may be ts1 or ts2) * * Returned Value: * None * ****************************************************************************/ #define clock_timespec_add(ts1, ts2, ts3) \ do \ { \ time_t _sec = (ts1)->tv_sec + (ts2)->tv_sec; \ long _nsec = (ts1)->tv_nsec + (ts2)->tv_nsec; \ if (_nsec >= NSEC_PER_SEC) \ { \ _nsec -= NSEC_PER_SEC; \ _sec++; \ } \ (ts3)->tv_sec = _sec; \ (ts3)->tv_nsec = _nsec; \ }\ while (0) /**************************************************************************** * Name: clock_timespec_subtract * * Description: * Subtract timespec ts2 from to1 and return the result in ts3. * Zero is returned if the time difference is negative. * * Input Parameters: * ts1 and ts2: The two timespecs to be subtracted (ts1 - ts2) * t23: The location to return the result (may be ts1 or ts2) * * Returned Value: * None * ****************************************************************************/ #define clock_timespec_subtract(ts1, ts2, ts3) \ do \ { \ time_t _sec = (ts1)->tv_sec - (ts2)->tv_sec; \ long _nsec = (ts1)->tv_nsec - (ts2)->tv_nsec; \ if (_nsec < 0) \ { \ _nsec += NSEC_PER_SEC; \ _sec--; \ } \ if ((sclock_t)_sec < 0) \ { \ _sec = 0; \ _nsec = 0; \ } \ (ts3)->tv_sec = _sec; \ (ts3)->tv_nsec = _nsec; \ }\ while (0) /**************************************************************************** * Name: clock_timespec_compare * * Description: * Return < 0 if time ts1 is before time ts2 * Return > 0 if time ts2 is before time ts1 * Return 0 if time ts1 is the same as time ts2 * ****************************************************************************/ #define clock_timespec_compare(ts1, ts2) \ (((ts1)->tv_sec < (ts2)->tv_sec) ? -1 : \ ((ts1)->tv_sec > (ts2)->tv_sec) ? 1 : \ (ts1)->tv_nsec - (ts2)->tv_nsec) /**************************************************************************** * Name: clock_abstime2ticks * * Description: * Convert an absolute timespec delay to system timer ticks. * * Input Parameters: * clockid - The timing source to use in the conversion * abstime - Convert this absolute time to ticks * ticks - Return the converted number of ticks here. * * Returned Value: * None * * Assumptions: * Interrupts should be disabled so that the time is not changing during * the calculation * ****************************************************************************/ #define clock_abstime2ticks(clockid, abstime, ticks) \ do \ { \ struct timespec _reltime; \ nxclock_gettime(clockid, &_reltime); \ clock_timespec_subtract(abstime, &_reltime, &_reltime); \ *(ticks) = clock_time2ticks(&_reltime); \ } \ while (0) /**************************************************************************** * Name: clock_realtime2absticks * * Description: * Convert real time to monotonic ticks. * * Input Parameters: * mono - Return the converted time here. * abstime - Convert this absolute time to ticks * * Returned Value: * OK (0) on success; a negated errno value on failure. * * Assumptions: * Interrupts should be disabled so that the time is not changing during * the calculation * ****************************************************************************/ int clock_realtime2absticks(FAR const struct timespec *reltime, FAR clock_t *absticks); /**************************************************************************** * Name: clock_compare * * Description: * This function is used for check whether the expired time is reached. * It take the ticks wrap-around into consideration. * * Input Parameters: * tick1 - Expected time in clock ticks * tick2 - Current time in clock ticks * * Returned Value: * true - Expected ticks is timeout. * false - Otherwise. * * Assumptions: * The type of delay value should be sclock_t. * ****************************************************************************/ /* clock_compare considers tick wraparound, discussed as follows: * Assuming clock_t is a 64-bit data type. * * Case 1: If tick2 - tick1 > 2^63, it is considered expired * or expired after tick2 wraparound. * * Case 2: If tick2 - tick1 <= 2^63, * it is considered not expired. * * For bit-63 as the sign bit, we can simplify this to: * (sclock_t)(tick2 - tick1) >= 0. * * However, this function requires an assumption to work correctly: * Assumes the timer delay time does not exceed SCLOCK_MAX (2^63 - 1). * * The range of the delay data type sclock_t being * [- (SCLOCK_MAX + 1), SCLOCK_MAX] ensures this assumption holds. */ #define clock_compare(tick1, tick2) ((sclock_t)((tick2) - (tick1)) >= 0) /**************************************************************************** * Name: clock_isleapyear * * Description: * Return true if the specified year is a leap year * ****************************************************************************/ int clock_isleapyear(int year); /**************************************************************************** * Name: clock_daysbeforemonth * * Description: * Get the number of days that occurred before the beginning of the month. * ****************************************************************************/ int clock_daysbeforemonth(int month, bool leapyear); /**************************************************************************** * Name: clock_dayoftheweek * * Description: * Get the day of the week * * Input Parameters: * mday - The day of the month 1 - 31 * month - The month of the year 1 - 12 * year - the year including the 1900 * * Returned Value: * Zero based day of the week 0-6, 0 = Sunday, 1 = Monday... 6 = Saturday * ****************************************************************************/ int clock_dayoftheweek(int mday, int month, int year); /**************************************************************************** * Name: clock_calendar2utc * * Description: * Calendar/UTC conversion based on algorithms from p. 604 * of Seidelman, P. K. 1992. Explanatory Supplement to * the Astronomical Almanac. University Science Books, * Mill Valley. * ****************************************************************************/ time_t clock_calendar2utc(int year, int month, int day); /**************************************************************************** * Name: clock_synchronize * * Description: * Synchronize the system timer to a hardware RTC. This operation is * normally performed automatically by the system during clock * initialization. However, the user may also need to explicitly re- * synchronize the system timer to the RTC under certain conditions where * the system timer is known to be in error. For example, in certain low- * power states, the system timer may be stopped but the RTC will continue * keep correct time. After recovering from such low-power state, this * function should be called to restore the correct system time. * * Calling this function could result in system time going "backward" in * time, especially with certain lower resolution RTC implementations. * Time going backward could have bad consequences if there are ongoing * timers and delays. So use this interface with care. * * Input Parameters: * tp: rtc time should be synced, set NULL to re-get time * * Returned Value: * None * * Assumptions: * ****************************************************************************/ #ifdef CONFIG_RTC void clock_synchronize(FAR const struct timespec *tp); #endif /**************************************************************************** * Name: clock_resynchronize * * Description: * Resynchronize the system timer to a hardware RTC. The user can * explicitly re-synchronize the system timer to the RTC under certain * conditions where the system timer is known to be in error. For example, * in certain low-power states, the system timer may be stopped but the * RTC will continue keep correct time. After recovering from such * low-power state, this function should be called to restore the correct * system time. Function also keeps monotonic clock at rate of RTC. * * Calling this function will not result in system time going "backward" in * time. If setting system time with RTC would result time going "backward" * then resynchronization is not performed. * * Input Parameters: * diff: amount of time system-time is adjusted forward with RTC * * Returned Value: * None * * Assumptions: * ****************************************************************************/ #if defined(CONFIG_RTC) && !defined(CONFIG_SCHED_TICKLESS) void clock_resynchronize(FAR struct timespec *rtc_diff); #endif /**************************************************************************** * Name: clock_systime_ticks * * Description: * Return the current value of the 32/64-bit system timer counter. * * Indirect access to the system timer counter is required through this * function if the execution environment does not have direct access to * kernel global data. * * Use of this function is also required to assure atomic access to the * 64-bit system timer. * * NOTE: This is an internal OS interface and should not be called from * application code. Rather, the functionally equivalent, standard * interface clock() should be used. * * Input Parameters: * None * * Returned Value: * The current value of the system timer counter * ****************************************************************************/ #if !defined(__HAVE_KERNEL_GLOBALS) || defined(CONFIG_SYSTEM_TIME64) clock_t clock_systime_ticks(void); #endif /**************************************************************************** * Name: clock_systime_timespec * * Description: * Return the current value of the system timer counter as a struct * timespec. * * Input Parameters: * ts - Location to return the time * * Returned Value: * OK (0) on success; a negated errno value on failure. * * Assumptions: * ****************************************************************************/ int clock_systime_timespec(FAR struct timespec *ts); /**************************************************************************** * Name: clock_cpuload * * Description: * Return load measurement data for the select PID. * * Input Parameters: * pid - The task ID of the thread of interest. pid == 0 is IDLE thread. * cpuload - The location to return the CPU load * * Returned Value: * OK (0) on success; a negated errno value on failure. The only reason * that this function can fail is if 'pid' no longer refers to a valid * thread. * * Assumptions: * ****************************************************************************/ #ifndef CONFIG_SCHED_CPULOAD_NONE int clock_cpuload(int pid, FAR struct cpuload_s *cpuload); #endif /**************************************************************************** * Name: nxsched_oneshot_extclk * * Description: * Configure to use a oneshot timer as described in * include/nuttx/timers/oneshot.h to provide external clocking to assess * the CPU load. * * Input Parameters: * lower - An instance of the oneshot timer interface as defined in * include/nuttx/timers/oneshot.h * * Returned Value: * None * ****************************************************************************/ #ifdef CONFIG_CPULOAD_ONESHOT struct oneshot_lowerhalf_s; void nxsched_oneshot_extclk(FAR struct oneshot_lowerhalf_s *lower); #endif /**************************************************************************** * Name: nxsched_period_extclk * * Description: * Configure to use a period timer as described in * include/nuttx/timers/timer.h to provide external clocking to assess * the CPU load. * * Input Parameters: * lower - An instance of the period timer interface as defined in * include/nuttx/timers/timer.h * * Returned Value: * None * ****************************************************************************/ #ifdef CONFIG_CPULOAD_PERIOD struct timer_lowerhalf_s; void nxsched_period_extclk(FAR struct timer_lowerhalf_s *lower); #endif /**************************************************************************** * perf_gettime ****************************************************************************/ clock_t perf_gettime(void); /**************************************************************************** * perf_convert ****************************************************************************/ void perf_convert(clock_t elapsed, FAR struct timespec *ts); /**************************************************************************** * perf_gettfreq ****************************************************************************/ unsigned long perf_getfreq(void); /**************************************************************************** * Name: nxclock_settime * * Description: * Clock Functions based on POSIX APIs * * CLOCK_REALTIME - POSIX demands this to be present. This is the wall * time clock. * ****************************************************************************/ void nxclock_settime(clockid_t clock_id, FAR const struct timespec *tp); /**************************************************************************** * Name: nxclock_gettime * * Description: * Get the current value of the specified time clock. * ****************************************************************************/ void nxclock_gettime(clockid_t clock_id, FAR struct timespec *tp); #undef EXTERN #ifdef __cplusplus } #endif #endif /* __INCLUDE_NUTTX_CLOCK_H */