/**************************************************************************** * crypto/sha2.c * $OpenBSD: sha2.c,v 1.19 2021/03/12 10:22:46 jsg Exp $ * FILE: sha2.c * AUTHOR: Aaron D. Gifford * * Copyright (c) 2000-2001, Aaron D. Gifford * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the copyright holder nor the names of contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $From: sha2.c,v 1.1 2001/11/08 00:01:51 adg Exp adg $ ****************************************************************************/ /**************************************************************************** * Included Files ****************************************************************************/ #include #include #include #include /* UNROLLED TRANSFORM LOOP NOTE: * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform * loop version for the hash transform rounds (defined using macros * later in this file). Either define on the command line, for example: * * cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c * * or define below: * * #define SHA2_UNROLL_TRANSFORM * */ #ifndef SMALL_KERNEL # if defined(__amd64__) || defined(__i386__) # define SHA2_UNROLL_TRANSFORM # endif #endif /* SHA-256/384/512 Machine Architecture Definitions */ /* BYTE_ORDER NOTE: * * Please make sure that your system defines BYTE_ORDER. If your * architecture is little-endian, make sure it also defines * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are * equivalent. * * If your system does not define the above, then you can do so by * hand like this: * * #define LITTLE_ENDIAN 1234 * #define BIG_ENDIAN 4321 * * And for little-endian machines, add: * * #define BYTE_ORDER LITTLE_ENDIAN * * Or for big-endian machines: * * #define BYTE_ORDER BIG_ENDIAN * * The FreeBSD machine this was written on defines BYTE_ORDER * appropriately by including (which in turn includes * where the appropriate definitions are actually * made). */ #if !defined(BYTE_ORDER) || \ (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN) # error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN #endif /* SHA-256/384/512 Various Length Definitions */ /* NOTE: Most of these are in sha2.h */ #define SHA256_SHORT_BLOCK_LENGTH (SHA256_BLOCK_LENGTH - 8) #define SHA384_SHORT_BLOCK_LENGTH (SHA384_BLOCK_LENGTH - 16) #define SHA512_SHORT_BLOCK_LENGTH (SHA512_BLOCK_LENGTH - 16) /* Macro for incrementally adding the unsigned 64-bit integer n to the * unsigned 128-bit integer (represented using a two-element array of * 64-bit words): */ #define ADDINC128(w,n) \ do \ { \ (w)[0] += (uint64_t)(n); \ if ((w)[0] < (n)) \ { \ (w)[1]++; \ } \ } \ while (0) /* THE SIX LOGICAL FUNCTIONS */ /* Bit shifting and rotation (used by the six SHA-XYZ logical functions: * * NOTE: The naming of R and S appears backwards here (R is a SHIFT and * S is a ROTATION) because the SHA-256/384/512 description document * (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this * same "backwards" definition. */ /* Shift-right (used in SHA-256, SHA-384, and SHA-512): */ #define R(b,x) ((x) >> (b)) /* 32-bit Rotate-right (used in SHA-256): */ #define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b)))) /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */ #define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b)))) /* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */ #define CH(x,y,z) (((x) & (y)) ^ ((~(x)) & (z))) #define MAJ(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) /* Four of six logical functions used in SHA-256: */ #define SIGMA0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x))) #define SIGMA1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x))) #define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3, (x))) #define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x))) /* Four of six logical functions used in SHA-384 and SHA-512: */ #define SIGMA0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x))) #define SIGMA1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x))) #define sigma0_512(x) (S64(1, (x)) ^ S64( 8, (x)) ^ R(7, (x))) #define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R(6, (x))) /* INTERNAL FUNCTION PROTOTYPES */ /* NOTE: These should not be accessed directly from outside this * library -- they are intended for private internal visibility/use * only. */ void sha512last(FAR SHA2_CTX *); void sha256transform(FAR uint32_t *, FAR const uint8_t *); void sha512transform(FAR uint64_t *, FAR const uint8_t *); /* SHA-XYZ INITIAL HASH VALUES AND CONSTANTS */ /* Hash constant words K for SHA-256: */ const static uint32_t K256[64] = { 0x428a2f98ul, 0x71374491ul, 0xb5c0fbcful, 0xe9b5dba5ul, 0x3956c25bul, 0x59f111f1ul, 0x923f82a4ul, 0xab1c5ed5ul, 0xd807aa98ul, 0x12835b01ul, 0x243185beul, 0x550c7dc3ul, 0x72be5d74ul, 0x80deb1feul, 0x9bdc06a7ul, 0xc19bf174ul, 0xe49b69c1ul, 0xefbe4786ul, 0x0fc19dc6ul, 0x240ca1ccul, 0x2de92c6ful, 0x4a7484aaul, 0x5cb0a9dcul, 0x76f988daul, 0x983e5152ul, 0xa831c66dul, 0xb00327c8ul, 0xbf597fc7ul, 0xc6e00bf3ul, 0xd5a79147ul, 0x06ca6351ul, 0x14292967ul, 0x27b70a85ul, 0x2e1b2138ul, 0x4d2c6dfcul, 0x53380d13ul, 0x650a7354ul, 0x766a0abbul, 0x81c2c92eul, 0x92722c85ul, 0xa2bfe8a1ul, 0xa81a664bul, 0xc24b8b70ul, 0xc76c51a3ul, 0xd192e819ul, 0xd6990624ul, 0xf40e3585ul, 0x106aa070ul, 0x19a4c116ul, 0x1e376c08ul, 0x2748774cul, 0x34b0bcb5ul, 0x391c0cb3ul, 0x4ed8aa4aul, 0x5b9cca4ful, 0x682e6ff3ul, 0x748f82eeul, 0x78a5636ful, 0x84c87814ul, 0x8cc70208ul, 0x90befffaul, 0xa4506cebul, 0xbef9a3f7ul, 0xc67178f2ul }; /* Initial hash value H for SHA-256: */ const static uint32_t sha256_initial_hash_value[8] = { 0x6a09e667ul, 0xbb67ae85ul, 0x3c6ef372ul, 0xa54ff53aul, 0x510e527ful, 0x9b05688cul, 0x1f83d9abul, 0x5be0cd19ul }; /* Initial hash value H for SHA-224: */ const static uint32_t sha224_initial_hash_value[8] = { 0xc1059ed8ul, 0x367cd507ul, 0x3070dd17ul, 0xf70e5939ul, 0xffc00b31ul, 0x68581511ul, 0x64f98fa7ul, 0xbefa4fa4ul }; /* Hash constant words K for SHA-384 and SHA-512: */ const static uint64_t K512[80] = { 0x428a2f98d728ae22ull, 0x7137449123ef65cdull, 0xb5c0fbcfec4d3b2full, 0xe9b5dba58189dbbcull, 0x3956c25bf348b538ull, 0x59f111f1b605d019ull, 0x923f82a4af194f9bull, 0xab1c5ed5da6d8118ull, 0xd807aa98a3030242ull, 0x12835b0145706fbeull, 0x243185be4ee4b28cull, 0x550c7dc3d5ffb4e2ull, 0x72be5d74f27b896full, 0x80deb1fe3b1696b1ull, 0x9bdc06a725c71235ull, 0xc19bf174cf692694ull, 0xe49b69c19ef14ad2ull, 0xefbe4786384f25e3ull, 0x0fc19dc68b8cd5b5ull, 0x240ca1cc77ac9c65ull, 0x2de92c6f592b0275ull, 0x4a7484aa6ea6e483ull, 0x5cb0a9dcbd41fbd4ull, 0x76f988da831153b5ull, 0x983e5152ee66dfabull, 0xa831c66d2db43210ull, 0xb00327c898fb213full, 0xbf597fc7beef0ee4ull, 0xc6e00bf33da88fc2ull, 0xd5a79147930aa725ull, 0x06ca6351e003826full, 0x142929670a0e6e70ull, 0x27b70a8546d22ffcull, 0x2e1b21385c26c926ull, 0x4d2c6dfc5ac42aedull, 0x53380d139d95b3dfull, 0x650a73548baf63deull, 0x766a0abb3c77b2a8ull, 0x81c2c92e47edaee6ull, 0x92722c851482353bull, 0xa2bfe8a14cf10364ull, 0xa81a664bbc423001ull, 0xc24b8b70d0f89791ull, 0xc76c51a30654be30ull, 0xd192e819d6ef5218ull, 0xd69906245565a910ull, 0xf40e35855771202aull, 0x106aa07032bbd1b8ull, 0x19a4c116b8d2d0c8ull, 0x1e376c085141ab53ull, 0x2748774cdf8eeb99ull, 0x34b0bcb5e19b48a8ull, 0x391c0cb3c5c95a63ull, 0x4ed8aa4ae3418acbull, 0x5b9cca4f7763e373ull, 0x682e6ff3d6b2b8a3ull, 0x748f82ee5defb2fcull, 0x78a5636f43172f60ull, 0x84c87814a1f0ab72ull, 0x8cc702081a6439ecull, 0x90befffa23631e28ull, 0xa4506cebde82bde9ull, 0xbef9a3f7b2c67915ull, 0xc67178f2e372532bull, 0xca273eceea26619cull, 0xd186b8c721c0c207ull, 0xeada7dd6cde0eb1eull, 0xf57d4f7fee6ed178ull, 0x06f067aa72176fbaull, 0x0a637dc5a2c898a6ull, 0x113f9804bef90daeull, 0x1b710b35131c471bull, 0x28db77f523047d84ull, 0x32caab7b40c72493ull, 0x3c9ebe0a15c9bebcull, 0x431d67c49c100d4cull, 0x4cc5d4becb3e42b6ull, 0x597f299cfc657e2aull, 0x5fcb6fab3ad6faecull, 0x6c44198c4a475817ull }; /* Initial hash value H for SHA-384 */ const static uint64_t sha384_initial_hash_value[8] = { 0xcbbb9d5dc1059ed8ull, 0x629a292a367cd507ull, 0x9159015a3070dd17ull, 0x152fecd8f70e5939ull, 0x67332667ffc00b31ull, 0x8eb44a8768581511ull, 0xdb0c2e0d64f98fa7ull, 0x47b5481dbefa4fa4ull }; /* Initial hash value H for SHA-512 */ const static uint64_t sha512_initial_hash_value[8] = { 0x6a09e667f3bcc908ull, 0xbb67ae8584caa73bull, 0x3c6ef372fe94f82bull, 0xa54ff53a5f1d36f1ull, 0x510e527fade682d1ull, 0x9b05688c2b3e6c1full, 0x1f83d9abfb41bd6bull, 0x5be0cd19137e2179ull }; /**************************************************************************** * Public Functions ****************************************************************************/ /* SHA-256: */ void sha256init(FAR SHA2_CTX *context) { memcpy(context->state.st32, sha256_initial_hash_value, SHA256_DIGEST_LENGTH); memset(context->buffer, 0, SHA256_BLOCK_LENGTH); context->bitcount[0] = 0; } #ifdef SHA2_UNROLL_TRANSFORM /* Unrolled SHA-256 round macros: */ #define ROUND256_0_TO_15(a, b, c, d, e, f, g, h) \ do \ { \ W256[j] = (uint32_t)data[3] | ((uint32_t)data[2] << 8) | \ ((uint32_t)data[1] << 16) | ((uint32_t)data[0] << 24); \ data += 4; \ T1 = (h) + SIGMA1_256((e)) + \ CH((e), (f), (g)) + K256[j] + W256[j]; \ (d) += T1; \ (h) = T1 + SIGMA0_256((a)) + MAJ((a), (b), (c)); \ j++; \ } \ while (0) #define ROUND256(a, b, c, d, e, f, g, h) \ do \ { \ s0 = W256[(j + 1) & 0x0f]; \ s0 = sigma0_256(s0); \ s1 = W256[(j+14)&0x0f]; \ s1 = sigma1_256(s1); \ T1 = (h) + SIGMA1_256((e)) + CH((e), (f), (g)) + K256[j] + \ (W256[j & 0x0f] += s1 + W256[(j + 9) & 0x0f] + s0); \ (d) += T1; \ (h) = T1 + SIGMA0_256((a)) + MAJ((a), (b), (c)); \ j++; \ } \ while(0) void sha256transform(FAR uint32_t *state, FAR const uint8_t *data) { uint32_t a; uint32_t b; uint32_t c; uint32_t d; uint32_t e; uint32_t f; uint32_t g; uint32_t h; uint32_t s0; uint32_t s1; uint32_t T1; uint32_t W256[16]; int j; /* Initialize registers with the prev. intermediate value */ a = state[0]; b = state[1]; c = state[2]; d = state[3]; e = state[4]; f = state[5]; g = state[6]; h = state[7]; j = 0; do { /* Rounds 0 to 15 (unrolled): */ ROUND256_0_TO_15(a, b, c, d, e, f, g, h); ROUND256_0_TO_15(h, a, b, c, d, e, f, g); ROUND256_0_TO_15(g, h, a, b, c, d, e, f); ROUND256_0_TO_15(f, g, h, a, b, c, d, e); ROUND256_0_TO_15(e, f, g, h, a, b, c, d); ROUND256_0_TO_15(d, e, f, g, h, a, b, c); ROUND256_0_TO_15(c, d, e, f, g, h, a, b); ROUND256_0_TO_15(b, c, d, e, f, g, h, a); } while (j < 16); /* Now for the remaining rounds to 64: */ do { ROUND256(a, b, c, d, e, f, g, h); ROUND256(h, a, b, c, d, e, f, g); ROUND256(g, h, a, b, c, d, e, f); ROUND256(f, g, h, a, b, c, d, e); ROUND256(e, f, g, h, a, b, c, d); ROUND256(d, e, f, g, h, a, b, c); ROUND256(c, d, e, f, g, h, a, b); ROUND256(b, c, d, e, f, g, h, a); } while (j < 64); /* Compute the current intermediate hash value */ state[0] += a; state[1] += b; state[2] += c; state[3] += d; state[4] += e; state[5] += f; state[6] += g; state[7] += h; /* Clean up */ a = b = c = d = e = f = g = h = T1 = 0; } #else /* SHA2_UNROLL_TRANSFORM */ void sha256transform(FAR uint32_t *state, FAR const uint8_t *data) { uint32_t a; uint32_t b; uint32_t c; uint32_t d; uint32_t e; uint32_t f; uint32_t g; uint32_t h; uint32_t s0; uint32_t s1; uint32_t T1; uint32_t T2; uint32_t W256[16]; int j; /* Initialize registers with the prev. intermediate value */ a = state[0]; b = state[1]; c = state[2]; d = state[3]; e = state[4]; f = state[5]; g = state[6]; h = state[7]; j = 0; do { W256[j] = (uint32_t)data[3] | ((uint32_t)data[2] << 8) | ((uint32_t)data[1] << 16) | ((uint32_t)data[0] << 24); data += 4; /* Apply the SHA-256 compression function to update a..h */ T1 = h + SIGMA1_256(e) + CH(e, f, g) + K256[j] + W256[j]; T2 = SIGMA0_256(a) + MAJ(a, b, c); h = g; g = f; f = e; e = d + T1; d = c; c = b; b = a; a = T1 + T2; j++; } while (j < 16); do { /* Part of the message block expansion: */ s0 = W256[(j + 1) & 0x0f]; s0 = sigma0_256(s0); s1 = W256[(j + 14) & 0x0f]; s1 = sigma1_256(s1); /* Apply the SHA-256 compression function to update a..h */ T1 = h + SIGMA1_256(e) + CH(e, f, g) + K256[j] + (W256[j & 0x0f] += s1 + W256[(j + 9) & 0x0f] + s0); T2 = SIGMA0_256(a) + MAJ(a, b, c); h = g; g = f; f = e; e = d + T1; d = c; c = b; b = a; a = T1 + T2; j++; } while (j < 64); /* Compute the current intermediate hash value */ state[0] += a; state[1] += b; state[2] += c; state[3] += d; state[4] += e; state[5] += f; state[6] += g; state[7] += h; /* Clean up */ a = b = c = d = e = f = g = h = T1 = T2 = 0; } #endif /* SHA2_UNROLL_TRANSFORM */ void sha256update(FAR SHA2_CTX *context, FAR const void *dataptr, size_t len) { FAR const uint8_t *data = dataptr; size_t freespace; size_t usedspace; /* Calling with no data is valid (we do nothing) */ if (len == 0) { return; } usedspace = (context->bitcount[0] >> 3) % SHA256_BLOCK_LENGTH; if (usedspace > 0) { /* Calculate how much free space is available in the buffer */ freespace = SHA256_BLOCK_LENGTH - usedspace; if (len >= freespace) { /* Fill the buffer completely and process it */ memcpy(&context->buffer[usedspace], data, freespace); context->bitcount[0] += freespace << 3; len -= freespace; data += freespace; sha256transform(context->state.st32, context->buffer); } else { /* The buffer is not yet full */ memcpy(&context->buffer[usedspace], data, len); context->bitcount[0] += len << 3; /* Clean up: */ usedspace = freespace = 0; return; } } while (len >= SHA256_BLOCK_LENGTH) { /* Process as many complete blocks as we can */ sha256transform(context->state.st32, data); context->bitcount[0] += SHA256_BLOCK_LENGTH << 3; len -= SHA256_BLOCK_LENGTH; data += SHA256_BLOCK_LENGTH; } if (len > 0) { /* There's left-overs, so save 'em */ memcpy(context->buffer, data, len); context->bitcount[0] += len << 3; } /* Clean up: */ usedspace = freespace = 0; } void sha256last(FAR SHA2_CTX *context) { unsigned int usedspace; usedspace = (context->bitcount[0] >> 3) % SHA256_BLOCK_LENGTH; #if BYTE_ORDER == LITTLE_ENDIAN /* Convert FROM host byte order */ context->bitcount[0] = swap64(context->bitcount[0]); #endif if (usedspace > 0) { /* Begin padding with a 1 bit: */ context->buffer[usedspace++] = 0x80; if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) { /* Set-up for the last transform: */ memset(&context->buffer[usedspace], 0, SHA256_SHORT_BLOCK_LENGTH - usedspace); } else { if (usedspace < SHA256_BLOCK_LENGTH) { memset(&context->buffer[usedspace], 0, SHA256_BLOCK_LENGTH - usedspace); } /* Do second-to-last transform: */ sha256transform(context->state.st32, context->buffer); /* And set-up for the last transform: */ memset(context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH); } } else { /* Set-up for the last transform: */ memset(context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH); /* Begin padding with a 1 bit: */ *context->buffer = 0x80; } /* Set the bit count: */ *(FAR uint64_t *)&context->buffer[SHA256_SHORT_BLOCK_LENGTH] = context->bitcount[0]; /* Final transform: */ sha256transform(context->state.st32, context->buffer); } void sha256final(FAR uint8_t *digest, FAR SHA2_CTX *context) { sha256last(context); #if BYTE_ORDER == LITTLE_ENDIAN { /* Convert TO host byte order */ int j; for (j = 0; j < 8; j++) { context->state.st32[j] = swap32(context->state.st32[j]); } } #endif memcpy(digest, context->state.st32, SHA256_DIGEST_LENGTH); /* Clean up state data: */ explicit_bzero(context, sizeof(*context)); } /* SHA-224: */ void sha224init(FAR SHA2_CTX *context) { memcpy(context->state.st32, sha224_initial_hash_value, SHA256_DIGEST_LENGTH); memset(context->buffer, 0, SHA224_BLOCK_LENGTH); context->bitcount[0] = 0; } void sha224update(FAR SHA2_CTX *context, FAR const void *data, size_t len) { sha256update(context, data, len); } void sha224final(FAR uint8_t *digest, FAR SHA2_CTX *context) { sha256last(context); #if BYTE_ORDER == LITTLE_ENDIAN { /* Convert TO host byte order */ int j; for (j = 0; j < 8; j++) { context->state.st32[j] = swap32(context->state.st32[j]); } } #endif memcpy(digest, context->state.st32, SHA224_DIGEST_LENGTH); /* Clean up state data: */ explicit_bzero(context, sizeof(*context)); } /* SHA-512: */ void sha512init(FAR SHA2_CTX *context) { memcpy(context->state.st64, sha512_initial_hash_value, SHA512_DIGEST_LENGTH); memset(context->buffer, 0, SHA512_BLOCK_LENGTH); context->bitcount[0] = context->bitcount[1] = 0; } #ifdef SHA2_UNROLL_TRANSFORM /* Unrolled SHA-512 round macros: */ #define ROUND512_0_TO_15(a, b, c, d, e, f, g, h) \ do \ { \ W512[j] = (uint64_t)data[7] | ((uint64_t)data[6] << 8) | \ ((uint64_t)data[5] << 16) | ((uint64_t)data[4] << 24) | \ ((uint64_t)data[3] << 32) | ((uint64_t)data[2] << 40) | \ ((uint64_t)data[1] << 48) | ((uint64_t)data[0] << 56); \ data += 8; \ T1 = (h) + SIGMA1_512((e)) + CH((e), (f), (g)) + K512[j] + W512[j]; \ (d) += T1; \ (h) = T1 + SIGMA0_512((a)) + MAJ((a), (b), (c)); \ j++; \ } \ while (0) #define ROUND512(a, b, c, d, e, f, g, h) \ do \ { \ s0 = W512[(j + 1) & 0x0f]; \ s0 = sigma0_512(s0); \ s1 = W512[(j + 14) & 0x0f]; \ s1 = sigma1_512(s1); \ T1 = (h) + SIGMA1_512((e)) + CH((e), (f), (g)) + K512[j] + \ (W512[j & 0x0f] += s1 + W512[(j +9 ) & 0x0f] + s0); \ (d) += T1; \ (h) = T1 + SIGMA0_512((a)) + MAJ((a), (b), (c)); \ j++; \ } \ while(0) void sha512transform(FAR uint64_t *state, FAR const uint8_t *data) { uint64_t a; uint64_t b; uint64_t c; uint64_t d; uint64_t e; uint64_t f; uint64_t g; uint64_t h; uint64_t s0; uint64_t s1; uint64_t T1; uint64_t W512[16]; int j; /* Initialize registers with the prev. intermediate value */ a = state[0]; b = state[1]; c = state[2]; d = state[3]; e = state[4]; f = state[5]; g = state[6]; h = state[7]; j = 0; do { ROUND512_0_TO_15(a, b, c, d, e, f, g, h); ROUND512_0_TO_15(h, a, b, c, d, e, f, g); ROUND512_0_TO_15(g, h, a, b, c, d, e, f); ROUND512_0_TO_15(f, g, h, a, b, c, d, e); ROUND512_0_TO_15(e, f, g, h, a, b, c, d); ROUND512_0_TO_15(d, e, f, g, h, a, b, c); ROUND512_0_TO_15(c, d, e, f, g, h, a, b); ROUND512_0_TO_15(b, c, d, e, f, g, h, a); } while (j < 16); /* Now for the remaining rounds up to 79: */ do { ROUND512(a, b, c, d, e, f, g, h); ROUND512(h, a, b, c, d, e, f, g); ROUND512(g, h, a, b, c, d, e, f); ROUND512(f, g, h, a, b, c, d, e); ROUND512(e, f, g, h, a, b, c, d); ROUND512(d, e, f, g, h, a, b, c); ROUND512(c, d, e, f, g, h, a, b); ROUND512(b, c, d, e, f, g, h, a); } while (j < 80); /* Compute the current intermediate hash value */ state[0] += a; state[1] += b; state[2] += c; state[3] += d; state[4] += e; state[5] += f; state[6] += g; state[7] += h; /* Clean up */ a = b = c = d = e = f = g = h = T1 = 0; } #else /* SHA2_UNROLL_TRANSFORM */ void sha512transform(FAR uint64_t *state, FAR const uint8_t *data) { uint64_t a; uint64_t b; uint64_t c; uint64_t d; uint64_t e; uint64_t f; uint64_t g; uint64_t h; uint64_t s0; uint64_t s1; uint64_t T1; uint64_t T2; uint64_t W512[16]; int j; /* Initialize registers with the prev. intermediate value */ a = state[0]; b = state[1]; c = state[2]; d = state[3]; e = state[4]; f = state[5]; g = state[6]; h = state[7]; j = 0; do { W512[j] = (uint64_t)data[7] | ((uint64_t)data[6] << 8) | ((uint64_t)data[5] << 16) | ((uint64_t)data[4] << 24) | ((uint64_t)data[3] << 32) | ((uint64_t)data[2] << 40) | ((uint64_t)data[1] << 48) | ((uint64_t)data[0] << 56); data += 8; /* Apply the SHA-512 compression function to update a..h */ T1 = h + SIGMA1_512(e) + CH(e, f, g) + K512[j] + W512[j]; T2 = SIGMA0_512(a) + MAJ(a, b, c); h = g; g = f; f = e; e = d + T1; d = c; c = b; b = a; a = T1 + T2; j++; } while (j < 16); do { /* Part of the message block expansion: */ s0 = W512[(j + 1) & 0x0f]; s0 = sigma0_512(s0); s1 = W512[(j + 14) & 0x0f]; s1 = sigma1_512(s1); /* Apply the SHA-512 compression function to update a..h */ T1 = h + SIGMA1_512(e) + CH(e, f, g) + K512[j] + (W512[j & 0x0f] += s1 + W512[(j + 9) & 0x0f] + s0); T2 = SIGMA0_512(a) + MAJ(a, b, c); h = g; g = f; f = e; e = d + T1; d = c; c = b; b = a; a = T1 + T2; j++; } while (j < 80); /* Compute the current intermediate hash value */ state[0] += a; state[1] += b; state[2] += c; state[3] += d; state[4] += e; state[5] += f; state[6] += g; state[7] += h; /* Clean up */ a = b = c = d = e = f = g = h = T1 = T2 = 0; } #endif /* SHA2_UNROLL_TRANSFORM */ void sha512update(FAR SHA2_CTX *context, FAR const void *dataptr, size_t len) { FAR const uint8_t *data = dataptr; size_t freespace; size_t usedspace; /* Calling with no data is valid (we do nothing) */ if (len == 0) { return; } usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH; if (usedspace > 0) { /* Calculate how much free space is available in the buffer */ freespace = SHA512_BLOCK_LENGTH - usedspace; if (len >= freespace) { /* Fill the buffer completely and process it */ memcpy(&context->buffer[usedspace], data, freespace); ADDINC128(context->bitcount, freespace << 3); len -= freespace; data += freespace; sha512transform(context->state.st64, context->buffer); } else { /* The buffer is not yet full */ memcpy(&context->buffer[usedspace], data, len); ADDINC128(context->bitcount, len << 3); /* Clean up: */ usedspace = freespace = 0; return; } } while (len >= SHA512_BLOCK_LENGTH) { /* Process as many complete blocks as we can */ sha512transform(context->state.st64, data); ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3); len -= SHA512_BLOCK_LENGTH; data += SHA512_BLOCK_LENGTH; } if (len > 0) { /* There's left-overs, so save 'em */ memcpy(context->buffer, data, len); ADDINC128(context->bitcount, len << 3); } /* Clean up: */ usedspace = freespace = 0; } void sha512last(FAR SHA2_CTX *context) { unsigned int usedspace; usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH; #if BYTE_ORDER == LITTLE_ENDIAN /* Convert FROM host byte order */ context->bitcount[0] = swap64(context->bitcount[0]); context->bitcount[1] = swap64(context->bitcount[1]); #endif if (usedspace > 0) { /* Begin padding with a 1 bit: */ context->buffer[usedspace++] = 0x80; if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) { /* Set-up for the last transform: */ memset(&context->buffer[usedspace], 0, SHA512_SHORT_BLOCK_LENGTH - usedspace); } else { if (usedspace < SHA512_BLOCK_LENGTH) { memset(&context->buffer[usedspace], 0, SHA512_BLOCK_LENGTH - usedspace); } /* Do second-to-last transform: */ sha512transform(context->state.st64, context->buffer); /* And set-up for the last transform: */ memset(context->buffer, 0, SHA512_BLOCK_LENGTH - 2); } } else { /* Prepare for final transform: */ memset(context->buffer, 0, SHA512_SHORT_BLOCK_LENGTH); /* Begin padding with a 1 bit: */ *context->buffer = 0x80; } /* Store the length of input data (in bits): */ *(FAR uint64_t *)&context->buffer[SHA512_SHORT_BLOCK_LENGTH] = context->bitcount[1]; *(FAR uint64_t *)&context->buffer[SHA512_SHORT_BLOCK_LENGTH + 8] = context->bitcount[0]; /* Final transform: */ sha512transform(context->state.st64, context->buffer); } void sha512final(FAR uint8_t *digest, FAR SHA2_CTX *context) { sha512last(context); /* Save the hash data for output: */ #if BYTE_ORDER == LITTLE_ENDIAN { /* Convert TO host byte order */ int j; for (j = 0; j < 8; j++) { context->state.st64[j] = swap64(context->state.st64[j]); } } #endif memcpy(digest, context->state.st64, SHA512_DIGEST_LENGTH); /* Zero out state data */ explicit_bzero(context, sizeof(*context)); } /* SHA-384: */ void sha384init(FAR SHA2_CTX *context) { memcpy(context->state.st64, sha384_initial_hash_value, SHA512_DIGEST_LENGTH); memset(context->buffer, 0, SHA384_BLOCK_LENGTH); context->bitcount[0] = context->bitcount[1] = 0; } void sha384update(FAR SHA2_CTX *context, FAR const void *data, size_t len) { sha512update(context, data, len); } void sha384final(FAR uint8_t *digest, FAR SHA2_CTX *context) { sha512last(context); /* Save the hash data for output: */ #if BYTE_ORDER == LITTLE_ENDIAN { /* Convert TO host byte order */ int j; for (j = 0; j < 6; j++) { context->state.st64[j] = swap64(context->state.st64[j]); } } #endif memcpy(digest, context->state.st64, SHA384_DIGEST_LENGTH); /* Zero out state data */ explicit_bzero(context, sizeof(*context)); }