csection: We can save execution time by removing judgments.
test: We can use qemu for testing. compiling make distclean -j20; ./tools/configure.sh -l qemu-armv8a:nsh_smp ;make -j20 running qemu-system-aarch64 -cpu cortex-a53 -smp 4 -nographic -machine virt,virtualization=on,gic-version=3 -net none -chardev stdio,id=con,mux=on -serial chardev:con -mon chardev=con,mode=readline -kernel ./nuttx or compiling make distclean -j20; ./tools/configure.sh -l sabre-6quad:smp ;make -j20 running qemu-system-arm -semihosting -M sabrelite -m 1024 -smp 4 -kernel nuttx/nuttx -nographic Signed-off-by: hujun5 <hujun5@xiaomi.com>
This commit is contained in:
parent
ace5dde1a9
commit
9a36b8b823
|
@ -188,212 +188,205 @@ irqstate_t enter_critical_section(void)
|
|||
try_again:
|
||||
ret = up_irq_save();
|
||||
|
||||
/* Verify that the system has sufficiently initialized so that the task
|
||||
* lists are valid.
|
||||
/* If called from an interrupt handler, then just take the spinlock.
|
||||
* If we are already in a critical section, this will lock the CPU
|
||||
* in the interrupt handler. Sounds worse than it is.
|
||||
*/
|
||||
|
||||
if (nxsched_get_initstate() >= OSINIT_TASKLISTS)
|
||||
if (up_interrupt_context())
|
||||
{
|
||||
/* If called from an interrupt handler, then just take the spinlock.
|
||||
* If we are already in a critical section, this will lock the CPU
|
||||
* in the interrupt handler. Sounds worse than it is.
|
||||
/* We are in an interrupt handler. How can this happen?
|
||||
*
|
||||
* 1. We were not in a critical section when the interrupt
|
||||
* occurred. In this case, the interrupt was entered with:
|
||||
*
|
||||
* g_cpu_irqlock = SP_UNLOCKED.
|
||||
* g_cpu_nestcount = 0
|
||||
* All CPU bits in g_cpu_irqset should be zero
|
||||
*
|
||||
* 2. We were in a critical section and interrupts on this
|
||||
* this CPU were disabled -- this is an impossible case.
|
||||
*
|
||||
* 3. We were in critical section, but up_irq_save() only
|
||||
* disabled local interrupts on a different CPU;
|
||||
* Interrupts could still be enabled on this CPU.
|
||||
*
|
||||
* g_cpu_irqlock = SP_LOCKED.
|
||||
* g_cpu_nestcount = 0
|
||||
* The bit in g_cpu_irqset for this CPU should be zero
|
||||
*
|
||||
* 4. An extension of 3 is that we may be re-entered numerous
|
||||
* times from the same interrupt handler. In that case:
|
||||
*
|
||||
* g_cpu_irqlock = SP_LOCKED.
|
||||
* g_cpu_nestcount > 0
|
||||
* The bit in g_cpu_irqset for this CPU should be zero
|
||||
*
|
||||
* NOTE: However, the interrupt entry conditions can change due
|
||||
* to previous processing by the interrupt handler that may
|
||||
* instantiate a new thread that has irqcount > 0 and may then
|
||||
* set the bit in g_cpu_irqset and g_cpu_irqlock = SP_LOCKED
|
||||
*/
|
||||
|
||||
if (up_interrupt_context())
|
||||
/* Handle nested calls to enter_critical_section() from the same
|
||||
* interrupt.
|
||||
*/
|
||||
|
||||
cpu = this_cpu();
|
||||
if (g_cpu_nestcount[cpu] > 0)
|
||||
{
|
||||
/* We are in an interrupt handler. How can this happen?
|
||||
*
|
||||
* 1. We were not in a critical section when the interrupt
|
||||
* occurred. In this case, the interrupt was entered with:
|
||||
*
|
||||
* g_cpu_irqlock = SP_UNLOCKED.
|
||||
* g_cpu_nestcount = 0
|
||||
* All CPU bits in g_cpu_irqset should be zero
|
||||
*
|
||||
* 2. We were in a critical section and interrupts on this
|
||||
* this CPU were disabled -- this is an impossible case.
|
||||
*
|
||||
* 3. We were in critical section, but up_irq_save() only
|
||||
* disabled local interrupts on a different CPU;
|
||||
* Interrupts could still be enabled on this CPU.
|
||||
*
|
||||
* g_cpu_irqlock = SP_LOCKED.
|
||||
* g_cpu_nestcount = 0
|
||||
* The bit in g_cpu_irqset for this CPU should be zero
|
||||
*
|
||||
* 4. An extension of 3 is that we may be re-entered numerous
|
||||
* times from the same interrupt handler. In that case:
|
||||
*
|
||||
* g_cpu_irqlock = SP_LOCKED.
|
||||
* g_cpu_nestcount > 0
|
||||
* The bit in g_cpu_irqset for this CPU should be zero
|
||||
*
|
||||
* NOTE: However, the interrupt entry conditions can change due
|
||||
* to previous processing by the interrupt handler that may
|
||||
* instantiate a new thread that has irqcount > 0 and may then
|
||||
* set the bit in g_cpu_irqset and g_cpu_irqlock = SP_LOCKED
|
||||
DEBUGASSERT(spin_is_locked(&g_cpu_irqlock) &&
|
||||
g_cpu_nestcount[cpu] < UINT8_MAX);
|
||||
g_cpu_nestcount[cpu]++;
|
||||
}
|
||||
|
||||
/* This is the first call to enter_critical_section from the
|
||||
* interrupt handler.
|
||||
*/
|
||||
|
||||
else
|
||||
{
|
||||
int paused = false;
|
||||
|
||||
/* Make sure that the g_cpu_irqset was not already set
|
||||
* by previous logic on this CPU that was executed by the
|
||||
* interrupt handler. We know that the bit in g_cpu_irqset
|
||||
* for this CPU was zero on entry into the interrupt handler,
|
||||
* so if it is non-zero now then we know that was the case.
|
||||
*/
|
||||
|
||||
/* Handle nested calls to enter_critical_section() from the same
|
||||
* interrupt.
|
||||
*/
|
||||
|
||||
cpu = this_cpu();
|
||||
if (g_cpu_nestcount[cpu] > 0)
|
||||
if ((g_cpu_irqset & (1 << cpu)) == 0)
|
||||
{
|
||||
DEBUGASSERT(spin_is_locked(&g_cpu_irqlock) &&
|
||||
g_cpu_nestcount[cpu] < UINT8_MAX);
|
||||
g_cpu_nestcount[cpu]++;
|
||||
}
|
||||
|
||||
/* This is the first call to enter_critical_section from the
|
||||
* interrupt handler.
|
||||
*/
|
||||
|
||||
else
|
||||
{
|
||||
int paused = false;
|
||||
|
||||
/* Make sure that the g_cpu_irqset was not already set
|
||||
* by previous logic on this CPU that was executed by the
|
||||
* interrupt handler. We know that the bit in g_cpu_irqset
|
||||
* for this CPU was zero on entry into the interrupt handler,
|
||||
* so if it is non-zero now then we know that was the case.
|
||||
/* Wait until we can get the spinlock (meaning that we are
|
||||
* no longer blocked by the critical section).
|
||||
*/
|
||||
|
||||
if ((g_cpu_irqset & (1 << cpu)) == 0)
|
||||
{
|
||||
/* Wait until we can get the spinlock (meaning that we are
|
||||
* no longer blocked by the critical section).
|
||||
*/
|
||||
|
||||
try_again_in_irq:
|
||||
if (!irq_waitlock(cpu))
|
||||
{
|
||||
/* We are in a deadlock condition due to a pending
|
||||
* pause request interrupt. Break the deadlock by
|
||||
* handling the pause request now.
|
||||
*/
|
||||
|
||||
if (!paused)
|
||||
{
|
||||
up_cpu_paused_save();
|
||||
}
|
||||
|
||||
DEBUGVERIFY(up_cpu_paused(cpu));
|
||||
paused = true;
|
||||
|
||||
/* NOTE: As the result of up_cpu_paused(cpu), this CPU
|
||||
* might set g_cpu_irqset in nxsched_resume_scheduler()
|
||||
* However, another CPU might hold g_cpu_irqlock.
|
||||
* To avoid this situation, releae g_cpu_irqlock first.
|
||||
*/
|
||||
|
||||
if ((g_cpu_irqset & (1 << cpu)) != 0)
|
||||
{
|
||||
spin_clrbit(&g_cpu_irqset, cpu, &g_cpu_irqsetlock,
|
||||
&g_cpu_irqlock);
|
||||
}
|
||||
|
||||
/* NOTE: Here, this CPU does not hold g_cpu_irqlock,
|
||||
* so call irq_waitlock(cpu) to acquire g_cpu_irqlock.
|
||||
*/
|
||||
|
||||
goto try_again_in_irq;
|
||||
}
|
||||
}
|
||||
|
||||
/* In any event, the nesting count is now one */
|
||||
|
||||
g_cpu_nestcount[cpu] = 1;
|
||||
|
||||
/* Also set the CPU bit so that other CPUs will be aware that
|
||||
* this CPU holds the critical section.
|
||||
*/
|
||||
|
||||
spin_setbit(&g_cpu_irqset, cpu, &g_cpu_irqsetlock,
|
||||
&g_cpu_irqlock);
|
||||
if (paused)
|
||||
if (!irq_waitlock(cpu))
|
||||
{
|
||||
up_cpu_paused_restore();
|
||||
/* We are in a deadlock condition due to a pending
|
||||
* pause request interrupt. Break the deadlock by
|
||||
* handling the pause request now.
|
||||
*/
|
||||
|
||||
if (!paused)
|
||||
{
|
||||
up_cpu_paused_save();
|
||||
}
|
||||
|
||||
DEBUGVERIFY(up_cpu_paused(cpu));
|
||||
paused = true;
|
||||
|
||||
/* NOTE: As the result of up_cpu_paused(cpu), this CPU
|
||||
* might set g_cpu_irqset in nxsched_resume_scheduler()
|
||||
* However, another CPU might hold g_cpu_irqlock.
|
||||
* To avoid this situation, releae g_cpu_irqlock first.
|
||||
*/
|
||||
|
||||
if ((g_cpu_irqset & (1 << cpu)) != 0)
|
||||
{
|
||||
spin_clrbit(&g_cpu_irqset, cpu, &g_cpu_irqsetlock,
|
||||
&g_cpu_irqlock);
|
||||
}
|
||||
|
||||
/* NOTE: Here, this CPU does not hold g_cpu_irqlock,
|
||||
* so call irq_waitlock(cpu) to acquire g_cpu_irqlock.
|
||||
*/
|
||||
|
||||
goto try_again_in_irq;
|
||||
}
|
||||
}
|
||||
|
||||
/* In any event, the nesting count is now one */
|
||||
|
||||
g_cpu_nestcount[cpu] = 1;
|
||||
|
||||
/* Also set the CPU bit so that other CPUs will be aware that
|
||||
* this CPU holds the critical section.
|
||||
*/
|
||||
|
||||
spin_setbit(&g_cpu_irqset, cpu, &g_cpu_irqsetlock,
|
||||
&g_cpu_irqlock);
|
||||
if (paused)
|
||||
{
|
||||
up_cpu_paused_restore();
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Normal tasking environment.
|
||||
*
|
||||
* Get the TCB of the currently executing task on this CPU (avoid
|
||||
* using this_task() which can recurse.
|
||||
*/
|
||||
|
||||
cpu = this_cpu();
|
||||
rtcb = current_task(cpu);
|
||||
DEBUGASSERT(rtcb != NULL);
|
||||
|
||||
/* Do we already have interrupts disabled? */
|
||||
|
||||
if (rtcb->irqcount > 0)
|
||||
{
|
||||
/* Yes... make sure that the spinlock is set and increment the
|
||||
* IRQ lock count.
|
||||
*
|
||||
* NOTE: If irqcount > 0 then (1) we are in a critical section,
|
||||
* and (2) this CPU should hold the lock.
|
||||
*/
|
||||
|
||||
DEBUGASSERT(spin_is_locked(&g_cpu_irqlock) &&
|
||||
(g_cpu_irqset & (1 << this_cpu())) != 0 &&
|
||||
rtcb->irqcount < INT16_MAX);
|
||||
rtcb->irqcount++;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Normal tasking environment.
|
||||
*
|
||||
* Get the TCB of the currently executing task on this CPU (avoid
|
||||
* using this_task() which can recurse.
|
||||
/* If we get here with irqcount == 0, then we know that the
|
||||
* current task running on this CPU is not in a critical
|
||||
* section. However other tasks on other CPUs may be in a
|
||||
* critical section. If so, we must wait until they release
|
||||
* the spinlock.
|
||||
*/
|
||||
|
||||
cpu = this_cpu();
|
||||
rtcb = current_task(cpu);
|
||||
DEBUGASSERT(rtcb != NULL);
|
||||
DEBUGASSERT((g_cpu_irqset & (1 << cpu)) == 0);
|
||||
|
||||
/* Do we already have interrupts disabled? */
|
||||
|
||||
if (rtcb->irqcount > 0)
|
||||
if (!irq_waitlock(cpu))
|
||||
{
|
||||
/* Yes... make sure that the spinlock is set and increment the
|
||||
* IRQ lock count.
|
||||
*
|
||||
* NOTE: If irqcount > 0 then (1) we are in a critical section,
|
||||
* and (2) this CPU should hold the lock.
|
||||
/* We are in a deadlock condition due to a pending pause
|
||||
* request interrupt. Re-enable interrupts on this CPU
|
||||
* and try again. Briefly re-enabling interrupts should
|
||||
* be sufficient to permit processing the pending pause
|
||||
* request.
|
||||
*/
|
||||
|
||||
DEBUGASSERT(spin_is_locked(&g_cpu_irqlock) &&
|
||||
(g_cpu_irqset & (1 << this_cpu())) != 0 &&
|
||||
rtcb->irqcount < INT16_MAX);
|
||||
rtcb->irqcount++;
|
||||
up_irq_restore(ret);
|
||||
goto try_again;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* If we get here with irqcount == 0, then we know that the
|
||||
* current task running on this CPU is not in a critical
|
||||
* section. However other tasks on other CPUs may be in a
|
||||
* critical section. If so, we must wait until they release
|
||||
* the spinlock.
|
||||
*/
|
||||
|
||||
DEBUGASSERT((g_cpu_irqset & (1 << cpu)) == 0);
|
||||
/* Then set the lock count to 1.
|
||||
*
|
||||
* Interrupts disables must follow a stacked order. We
|
||||
* cannot other context switches to re-order the enabling
|
||||
* disabling of interrupts.
|
||||
*
|
||||
* The scheduler accomplishes this by treating the irqcount
|
||||
* like lockcount: Both will disable pre-emption.
|
||||
*/
|
||||
|
||||
if (!irq_waitlock(cpu))
|
||||
{
|
||||
/* We are in a deadlock condition due to a pending pause
|
||||
* request interrupt. Re-enable interrupts on this CPU
|
||||
* and try again. Briefly re-enabling interrupts should
|
||||
* be sufficient to permit processing the pending pause
|
||||
* request.
|
||||
*/
|
||||
spin_setbit(&g_cpu_irqset, cpu, &g_cpu_irqsetlock,
|
||||
&g_cpu_irqlock);
|
||||
rtcb->irqcount = 1;
|
||||
|
||||
up_irq_restore(ret);
|
||||
goto try_again;
|
||||
}
|
||||
|
||||
/* Then set the lock count to 1.
|
||||
*
|
||||
* Interrupts disables must follow a stacked order. We
|
||||
* cannot other context switches to re-order the enabling
|
||||
* disabling of interrupts.
|
||||
*
|
||||
* The scheduler accomplishes this by treating the irqcount
|
||||
* like lockcount: Both will disable pre-emption.
|
||||
*/
|
||||
|
||||
spin_setbit(&g_cpu_irqset, cpu, &g_cpu_irqsetlock,
|
||||
&g_cpu_irqlock);
|
||||
rtcb->irqcount = 1;
|
||||
|
||||
/* Note that we have entered the critical section */
|
||||
/* Note that we have entered the critical section */
|
||||
|
||||
#ifdef CONFIG_SCHED_CRITMONITOR
|
||||
nxsched_critmon_csection(rtcb, true);
|
||||
nxsched_critmon_csection(rtcb, true);
|
||||
#endif
|
||||
#ifdef CONFIG_SCHED_INSTRUMENTATION_CSECTION
|
||||
sched_note_csection(rtcb, true);
|
||||
sched_note_csection(rtcb, true);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -412,11 +405,9 @@ irqstate_t enter_critical_section(void)
|
|||
|
||||
ret = up_irq_save();
|
||||
|
||||
/* Check if we were called from an interrupt handler and that the task
|
||||
* lists have been initialized.
|
||||
*/
|
||||
/* Check if we were called from an interrupt handler */
|
||||
|
||||
if (!up_interrupt_context() && nxsched_get_initstate() >= OSINIT_TASKLISTS)
|
||||
if (!up_interrupt_context())
|
||||
{
|
||||
FAR struct tcb_s *rtcb = this_task();
|
||||
DEBUGASSERT(rtcb != NULL);
|
||||
|
@ -459,108 +450,101 @@ void leave_critical_section(irqstate_t flags)
|
|||
{
|
||||
int cpu;
|
||||
|
||||
/* Verify that the system has sufficiently initialized so that the task
|
||||
* lists are valid.
|
||||
/* If called from an interrupt handler, then just release the
|
||||
* spinlock. The interrupt handling logic should already hold the
|
||||
* spinlock if enter_critical_section() has been called. Unlocking
|
||||
* the spinlock will allow interrupt handlers on other CPUs to execute
|
||||
* again.
|
||||
*/
|
||||
|
||||
if (nxsched_get_initstate() >= OSINIT_TASKLISTS)
|
||||
if (up_interrupt_context())
|
||||
{
|
||||
/* If called from an interrupt handler, then just release the
|
||||
* spinlock. The interrupt handling logic should already hold the
|
||||
* spinlock if enter_critical_section() has been called. Unlocking
|
||||
* the spinlock will allow interrupt handlers on other CPUs to execute
|
||||
* again.
|
||||
/* We are in an interrupt handler. Check if the last call to
|
||||
* enter_critical_section() was nested.
|
||||
*/
|
||||
|
||||
if (up_interrupt_context())
|
||||
cpu = this_cpu();
|
||||
if (g_cpu_nestcount[cpu] > 1)
|
||||
{
|
||||
/* We are in an interrupt handler. Check if the last call to
|
||||
* enter_critical_section() was nested.
|
||||
*/
|
||||
/* Yes.. then just decrement the nesting count */
|
||||
|
||||
cpu = this_cpu();
|
||||
if (g_cpu_nestcount[cpu] > 1)
|
||||
{
|
||||
/* Yes.. then just decrement the nesting count */
|
||||
|
||||
DEBUGASSERT(spin_is_locked(&g_cpu_irqlock));
|
||||
g_cpu_nestcount[cpu]--;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* No, not nested. Restore the g_cpu_irqset for this CPU
|
||||
* and release the spinlock (if necessary).
|
||||
*/
|
||||
|
||||
DEBUGASSERT(spin_is_locked(&g_cpu_irqlock) &&
|
||||
g_cpu_nestcount[cpu] == 1);
|
||||
|
||||
FAR struct tcb_s *rtcb = current_task(cpu);
|
||||
DEBUGASSERT(rtcb != NULL);
|
||||
|
||||
if (rtcb->irqcount <= 0)
|
||||
{
|
||||
spin_clrbit(&g_cpu_irqset, cpu, &g_cpu_irqsetlock,
|
||||
&g_cpu_irqlock);
|
||||
}
|
||||
|
||||
g_cpu_nestcount[cpu] = 0;
|
||||
}
|
||||
DEBUGASSERT(spin_is_locked(&g_cpu_irqlock));
|
||||
g_cpu_nestcount[cpu]--;
|
||||
}
|
||||
else
|
||||
{
|
||||
FAR struct tcb_s *rtcb;
|
||||
|
||||
/* Get the TCB of the currently executing task on this CPU (avoid
|
||||
* using this_task() which can recurse.
|
||||
/* No, not nested. Restore the g_cpu_irqset for this CPU
|
||||
* and release the spinlock (if necessary).
|
||||
*/
|
||||
|
||||
cpu = this_cpu();
|
||||
rtcb = current_task(cpu);
|
||||
DEBUGASSERT(rtcb != NULL && rtcb->irqcount > 0);
|
||||
DEBUGASSERT(spin_is_locked(&g_cpu_irqlock) &&
|
||||
g_cpu_nestcount[cpu] == 1);
|
||||
|
||||
/* Normal tasking context. We need to coordinate with other
|
||||
* tasks.
|
||||
*
|
||||
* Will we still have interrupts disabled after decrementing the
|
||||
* count?
|
||||
*/
|
||||
FAR struct tcb_s *rtcb = current_task(cpu);
|
||||
DEBUGASSERT(rtcb != NULL);
|
||||
|
||||
if (rtcb->irqcount > 1)
|
||||
if (rtcb->irqcount <= 0)
|
||||
{
|
||||
/* Yes... the spinlock should remain set */
|
||||
|
||||
DEBUGASSERT(spin_is_locked(&g_cpu_irqlock));
|
||||
rtcb->irqcount--;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* No.. Note that we have left the critical section */
|
||||
|
||||
#ifdef CONFIG_SCHED_CRITMONITOR
|
||||
nxsched_critmon_csection(rtcb, false);
|
||||
#endif
|
||||
#ifdef CONFIG_SCHED_INSTRUMENTATION_CSECTION
|
||||
sched_note_csection(rtcb, false);
|
||||
#endif
|
||||
/* Decrement our count on the lock. If all CPUs have
|
||||
* released, then unlock the spinlock.
|
||||
*/
|
||||
|
||||
DEBUGASSERT(spin_is_locked(&g_cpu_irqlock) &&
|
||||
(g_cpu_irqset & (1 << cpu)) != 0);
|
||||
|
||||
/* Now, possibly on return from a context switch, clear our
|
||||
* count on the lock. If all CPUs have released the lock,
|
||||
* then unlock the global IRQ spinlock.
|
||||
*/
|
||||
|
||||
rtcb->irqcount = 0;
|
||||
spin_clrbit(&g_cpu_irqset, cpu, &g_cpu_irqsetlock,
|
||||
&g_cpu_irqlock);
|
||||
|
||||
/* Have all CPUs released the lock? */
|
||||
}
|
||||
|
||||
g_cpu_nestcount[cpu] = 0;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
FAR struct tcb_s *rtcb;
|
||||
|
||||
/* Get the TCB of the currently executing task on this CPU (avoid
|
||||
* using this_task() which can recurse.
|
||||
*/
|
||||
|
||||
cpu = this_cpu();
|
||||
rtcb = current_task(cpu);
|
||||
DEBUGASSERT(rtcb != NULL && rtcb->irqcount > 0);
|
||||
|
||||
/* Normal tasking context. We need to coordinate with other
|
||||
* tasks.
|
||||
*
|
||||
* Will we still have interrupts disabled after decrementing the
|
||||
* count?
|
||||
*/
|
||||
|
||||
if (rtcb->irqcount > 1)
|
||||
{
|
||||
/* Yes... the spinlock should remain set */
|
||||
|
||||
DEBUGASSERT(spin_is_locked(&g_cpu_irqlock));
|
||||
rtcb->irqcount--;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* No.. Note that we have left the critical section */
|
||||
|
||||
#ifdef CONFIG_SCHED_CRITMONITOR
|
||||
nxsched_critmon_csection(rtcb, false);
|
||||
#endif
|
||||
#ifdef CONFIG_SCHED_INSTRUMENTATION_CSECTION
|
||||
sched_note_csection(rtcb, false);
|
||||
#endif
|
||||
/* Decrement our count on the lock. If all CPUs have
|
||||
* released, then unlock the spinlock.
|
||||
*/
|
||||
|
||||
DEBUGASSERT(spin_is_locked(&g_cpu_irqlock) &&
|
||||
(g_cpu_irqset & (1 << cpu)) != 0);
|
||||
|
||||
/* Now, possibly on return from a context switch, clear our
|
||||
* count on the lock. If all CPUs have released the lock,
|
||||
* then unlock the global IRQ spinlock.
|
||||
*/
|
||||
|
||||
rtcb->irqcount = 0;
|
||||
spin_clrbit(&g_cpu_irqset, cpu, &g_cpu_irqsetlock,
|
||||
&g_cpu_irqlock);
|
||||
|
||||
/* Have all CPUs released the lock? */
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -579,7 +563,7 @@ void leave_critical_section(irqstate_t flags)
|
|||
* lists have been initialized.
|
||||
*/
|
||||
|
||||
if (!up_interrupt_context() && nxsched_get_initstate() >= OSINIT_TASKLISTS)
|
||||
if (!up_interrupt_context())
|
||||
{
|
||||
FAR struct tcb_s *rtcb = this_task();
|
||||
DEBUGASSERT(rtcb != NULL);
|
||||
|
|
Loading…
Reference in New Issue