incubator-nuttx/sched/wqueue/kwork_thread.c

495 lines
13 KiB
C
Raw Normal View History

/****************************************************************************
* sched/wqueue/kwork_thread.c
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership. The
* ASF licenses this file to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance with the
* License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
****************************************************************************/
/****************************************************************************
* Included Files
****************************************************************************/
#include <nuttx/config.h>
#include <unistd.h>
#include <sched.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <errno.h>
#include <assert.h>
#include <debug.h>
#include <nuttx/queue.h>
#include <nuttx/wqueue.h>
#include <nuttx/kthread.h>
#include <nuttx/semaphore.h>
#include <nuttx/sched.h>
#include "sched/sched.h"
#include "wqueue/wqueue.h"
#if defined(CONFIG_SCHED_WORKQUEUE)
/****************************************************************************
* Pre-processor Definitions
****************************************************************************/
#ifndef CONFIG_SCHED_CRITMONITOR_MAXTIME_WQUEUE
# define CONFIG_SCHED_CRITMONITOR_MAXTIME_WQUEUE 0
#endif
#if CONFIG_SCHED_CRITMONITOR_MAXTIME_WQUEUE > 0
# define CALL_WORKER(worker, arg) \
do \
{ \
clock_t start; \
clock_t elapsed; \
start = perf_gettime(); \
worker(arg); \
elapsed = perf_gettime() - start; \
if (elapsed > CONFIG_SCHED_CRITMONITOR_MAXTIME_WQUEUE) \
{ \
CRITMONITOR_PANIC("WORKER %p execute too long %ju\n", \
worker, (uintmax_t)elapsed); \
} \
} \
while (0)
#else
# define CALL_WORKER(worker, arg) worker(arg)
#endif
/****************************************************************************
* Public Data
****************************************************************************/
#if defined(CONFIG_SCHED_HPWORK)
/* The state of the kernel mode, high priority work queue(s). */
struct hp_wqueue_s g_hpwork =
{
{NULL, NULL},
SEM_INITIALIZER(0),
SEM_INITIALIZER(0),
CONFIG_SCHED_HPNTHREADS,
};
#endif /* CONFIG_SCHED_HPWORK */
#if defined(CONFIG_SCHED_LPWORK)
/* The state of the kernel mode, low priority work queue(s). */
struct lp_wqueue_s g_lpwork =
{
{NULL, NULL},
SEM_INITIALIZER(0),
SEM_INITIALIZER(0),
CONFIG_SCHED_LPNTHREADS,
};
#endif /* CONFIG_SCHED_LPWORK */
/****************************************************************************
* Private Functions
****************************************************************************/
/****************************************************************************
* Name: work_thread
*
* Description:
* These are the worker threads that perform the actions placed on the
* high priority work queue.
*
* These, along with the lower priority worker thread(s) are the kernel
* mode work queues (also built in the flat build).
*
* All kernel mode worker threads are started by the OS during normal
* bring up. This entry point is referenced by OS internally and should
* not be accessed by application logic.
*
* Input Parameters:
* argc, argv
*
* Returned Value:
* Does not return
*
****************************************************************************/
static int work_thread(int argc, FAR char *argv[])
{
FAR struct kwork_wqueue_s *wqueue;
FAR struct kworker_s *kworker;
FAR struct work_s *work;
worker_t worker;
irqstate_t flags;
FAR void *arg;
int semcount;
/* Get the handle from argv */
wqueue = (FAR struct kwork_wqueue_s *)
((uintptr_t)strtoul(argv[1], NULL, 16));
kworker = (FAR struct kworker_s *)
((uintptr_t)strtoul(argv[2], NULL, 16));
flags = enter_critical_section();
/* Loop forever */
while (!wqueue->exit)
{
/* And check each entry in the work queue. Since we have disabled
* interrupts we know: (1) we will not be suspended unless we do
* so ourselves, and (2) there will be no changes to the work queue
*/
/* Remove the ready-to-execute work from the list */
while ((work = (FAR struct work_s *)dq_remfirst(&wqueue->q)) != NULL)
{
if (work->worker == NULL)
{
continue;
}
/* Extract the work description from the entry (in case the work
* instance will be re-used after it has been de-queued).
*/
worker = work->worker;
/* Extract the work argument (before re-enabling interrupts) */
arg = work->arg;
/* Mark the work as no longer being queued */
work->worker = NULL;
/* Mark the thread busy */
kworker->work = work;
/* Do the work. Re-enable interrupts while the work is being
* performed... we don't have any idea how long this will take!
*/
leave_critical_section(flags);
CALL_WORKER(worker, arg);
flags = enter_critical_section();
/* Mark the thread un-busy */
kworker->work = NULL;
/* Check if someone is waiting, if so, wakeup it */
nxsem_get_value(&kworker->wait, &semcount);
while (semcount++ < 0)
{
nxsem_post(&kworker->wait);
}
}
/* Then process queued work. work_process will not return until: (1)
* there is no further work in the work queue, and (2) semaphore is
* posted.
*/
nxsem_wait_uninterruptible(&wqueue->sem);
}
leave_critical_section(flags);
nxsem_post(&wqueue->exsem);
return OK;
}
/****************************************************************************
* Name: work_thread_create
*
* Description:
* This function creates and activates a work thread task with kernel-
* mode privileges.
*
* Input Parameters:
* name - Name of the new task
* priority - Priority of the new task
* stack_size - size (in bytes) of the stack needed
* wqueue - Work queue instance
*
* Returned Value:
* A negated errno value is returned on failure.
*
****************************************************************************/
static int work_thread_create(FAR const char *name, int priority,
int stack_size,
FAR struct kwork_wqueue_s *wqueue)
{
FAR char *argv[3];
char arg0[32];
char arg1[32];
int wndx;
int pid;
/* Don't permit any of the threads to run until we have fully initialized
* all of them.
*/
sched_lock();
for (wndx = 0; wndx < wqueue->nthreads; wndx++)
{
nxsem_init(&wqueue->worker[wndx].wait, 0, 0);
snprintf(arg0, sizeof(arg0), "%p", wqueue);
snprintf(arg1, sizeof(arg1), "%p", &wqueue->worker[wndx]);
argv[0] = arg0;
argv[1] = arg1;
argv[2] = NULL;
pid = kthread_create(name, priority, stack_size,
work_thread, argv);
DEBUGASSERT(pid > 0);
if (pid < 0)
{
serr("ERROR: work_thread_create %d failed: %d\n", wndx, pid);
sched_unlock();
return pid;
}
wqueue->worker[wndx].pid = pid;
}
sched_unlock();
return OK;
}
/****************************************************************************
* Public Functions
****************************************************************************/
/****************************************************************************
* Name: work_queue_create
*
* Description:
* Create a new work queue. The work queue is identified by its work
* queue ID, which is used to queue works to the work queue and to
* perform other operations on the work queue.
* This function will create a work thread pool with nthreads threads.
* The work queue ID is returned on success.
*
* Input Parameters:
* name - Name of the new task
* priority - Priority of the new task
* stack_size - size (in bytes) of the stack needed
* nthreads - Number of work thread should be created
*
* Returned Value:
* The work queue handle returned on success. Otherwise, NULL
*
****************************************************************************/
FAR struct kwork_wqueue_s *work_queue_create(FAR const char *name,
int priority,
int stack_size, int nthreads)
{
FAR struct kwork_wqueue_s *wqueue;
int ret;
if (nthreads < 1)
{
return NULL;
}
/* Allocate a new work queue */
wqueue = kmm_zalloc(sizeof(struct kwork_wqueue_s) +
nthreads * sizeof(struct kworker_s));
if (wqueue == NULL)
{
return NULL;
}
/* Initialize the work queue structure */
dq_init(&wqueue->q);
nxsem_init(&wqueue->sem, 0, 0);
nxsem_init(&wqueue->exsem, 0, 0);
wqueue->nthreads = nthreads;
/* Create the work queue thread pool */
ret = work_thread_create(name, priority, stack_size, wqueue);
if (ret < 0)
{
kmm_free(wqueue);
return NULL;
}
return wqueue;
}
/****************************************************************************
* Name: work_queue_free
*
* Description:
* Destroy a work queue. The work queue is identified by its work queue ID.
* All worker threads will be destroyed and the work queue will be freed.
* The work queue ID is invalid after this function returns.
*
* Input Parameters:
* qid - The work queue ID
*
* Returned Value:
* Zero on success, a negated errno value on failure.
*
****************************************************************************/
int work_queue_free(FAR struct kwork_wqueue_s *wqueue)
{
int wndx;
if (wqueue == NULL)
{
return -EINVAL;
}
/* Mark the work queue as exiting */
wqueue->exit = true;
/* Queue a exit work for all threads */
for (wndx = 0; wndx < wqueue->nthreads; wndx++)
{
nxsem_post(&wqueue->sem);
}
for (wndx = 0; wndx < wqueue->nthreads; wndx++)
{
nxsem_wait_uninterruptible(&wqueue->exsem);
}
nxsem_destroy(&wqueue->sem);
nxsem_destroy(&wqueue->exsem);
kmm_free(wqueue);
return OK;
}
/****************************************************************************
* Name: work_queue_priority_wq
*
* Description: Get priority of the wqueue. We believe that all worker
* threads have the same priority.
*
* Input Parameters:
* wqueue - The work queue handle
*
* Returned Value:
* SCHED_PRIORITY_MIN ~ SCHED_PRIORITY_MAX on success,
* a negated errno value on failure.
*
****************************************************************************/
int work_queue_priority_wq(FAR struct kwork_wqueue_s *wqueue)
{
FAR struct tcb_s *tcb;
if (wqueue == NULL)
{
return -EINVAL;
}
/* Find for the TCB associated with matching PID */
tcb = nxsched_get_tcb(wqueue->worker[0].pid);
if (!tcb)
{
return -ESRCH;
}
return tcb->sched_priority;
}
int work_queue_priority(int qid)
{
return work_queue_priority_wq(work_qid2wq(qid));
}
/****************************************************************************
* Name: work_start_highpri
*
* Description:
* Start the high-priority, kernel-mode work queue.
*
* Input Parameters:
* None
*
* Returned Value:
* Return zero (OK) on success. A negated errno value is returned on
* errno value is returned on failure.
*
****************************************************************************/
#ifdef CONFIG_SCHED_HPWORK
int work_start_highpri(void)
{
/* Start the high-priority, kernel mode worker thread(s) */
sinfo("Starting high-priority kernel worker thread(s)\n");
return work_thread_create(HPWORKNAME, CONFIG_SCHED_HPWORKPRIORITY,
CONFIG_SCHED_HPWORKSTACKSIZE,
(FAR struct kwork_wqueue_s *)&g_hpwork);
}
#endif /* CONFIG_SCHED_HPWORK */
/****************************************************************************
* Name: work_start_lowpri
*
* Description:
* Start the low-priority, kernel-mode worker thread(s)
*
* Input Parameters:
* None
*
* Returned Value:
* Return zero (OK) on success. A negated errno value is returned on
* errno value is returned on failure.
*
****************************************************************************/
#ifdef CONFIG_SCHED_LPWORK
int work_start_lowpri(void)
{
/* Start the low-priority, kernel mode worker thread(s) */
sinfo("Starting low-priority kernel worker thread(s)\n");
return work_thread_create(LPWORKNAME, CONFIG_SCHED_LPWORKPRIORITY,
CONFIG_SCHED_LPWORKSTACKSIZE,
(FAR struct kwork_wqueue_s *)&g_lpwork);
}
#endif /* CONFIG_SCHED_LPWORK */
#endif /* CONFIG_SCHED_WORKQUEUE */