sof/tools/probes/probes_main.c

314 lines
7.9 KiB
C

// SPDX-License-Identifier: BSD-3-Clause
//
// Copyright(c) 2019 Intel Corporation. All rights reserved.
//
// Author: Adrian Bonislawski <adrian.bonislawski@intel.com>
/*
* Probes will extract data for several probe points in one stream
* with extra headers. This app will read the resulting file,
* strip the headers and create wave files for each extracted buffer.
*
* Usage to parse data and create wave files: ./sof-probes -p data.bin
*
*/
#include <ipc/probe.h>
#include <sof/math/numbers.h>
#include "wave.h"
#include <ctype.h>
#include <errno.h>
#include <fcntl.h>
#include <stdbool.h>
#include <stddef.h>
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#define APP_NAME "sof-probes"
#define PACKET_MAX_SIZE 4096 /**< Size limit for probe data packet */
#define DATA_READ_LIMIT 1024 /**< Data limit for file read */
#define FILES_LIMIT 32 /**< Maximum num of probe output files */
#define FILE_PATH_LIMIT 128 /**< Path limit for probe output files */
struct wave_files {
FILE *fd;
uint32_t buffer_id;
uint32_t size;
struct wave header;
};
enum p_state {
READY = 0, /**< At this stage app is looking for a SYNC word */
SYNC, /**< SYNC received, copying data */
CHECK /**< Check crc and save packet if valid */
};
static uint32_t sample_rate[] = {
8000, 11025, 12000, 16000, 22050, 24000, 32000, 44100,
48000, 64000, 88200, 96000, 128000, 176400, 192000
};
static void usage(void)
{
fprintf(stdout, "Usage %s <option(s)> <buffer_id/file>\n\n", APP_NAME);
fprintf(stdout, "%s:\t -p file\tParse extracted file\n\n", APP_NAME);
fprintf(stdout, "%s:\t -h \t\tHelp, usage info\n", APP_NAME);
exit(0);
}
int write_data(char *path, char *data)
{
FILE *fd;
fd = fopen(path, "w");
if (!fd) {
fprintf(stderr, "error: unable to open file %s, error %d\n",
path, errno);
return errno;
}
fprintf(fd, "%s", data);
fclose(fd);
return 0;
}
int get_buffer_file(struct wave_files *files, uint32_t buffer_id)
{
int i;
for (i = 0; i < FILES_LIMIT; i++) {
if (files[i].buffer_id == buffer_id)
return i;
}
return -1;
}
int init_wave(struct wave_files *files, uint32_t buffer_id, uint32_t format)
{
char path[FILE_PATH_LIMIT];
int i;
i = get_buffer_file(files, 0);
if (i == -1) {
fprintf(stderr, "error: too many buffers\n");
exit(0);
}
fprintf(stdout, "%s:\t Creating wave file for buffer id: %d\n",
APP_NAME, buffer_id);
sprintf(path, "buffer_%d.wav", buffer_id);
files[i].fd = fopen(path, "wb");
if (!files[i].fd) {
fprintf(stderr, "error: unable to create file %s, error %d\n",
path, errno);
exit(0);
}
files[i].buffer_id = buffer_id;
files[i].header.riff.chunk_id = HEADER_RIFF;
files[i].header.riff.format = HEADER_WAVE;
files[i].header.fmt.subchunk_id = HEADER_FMT;
files[i].header.fmt.subchunk_size = 16;
files[i].header.fmt.audio_format = 1;
files[i].header.fmt.num_channels = ((format & PROBE_MASK_NB_CHANNELS) >> PROBE_SHIFT_NB_CHANNELS) + 1;
files[i].header.fmt.sample_rate = sample_rate[(format & PROBE_MASK_SAMPLE_RATE) >> PROBE_SHIFT_SAMPLE_RATE];
files[i].header.fmt.bits_per_sample = (((format & PROBE_MASK_CONTAINER_SIZE) >> PROBE_SHIFT_CONTAINER_SIZE) + 1) * 8;
files[i].header.fmt.byte_rate = files[i].header.fmt.sample_rate *
files[i].header.fmt.num_channels *
files[i].header.fmt.bits_per_sample / 8;
files[i].header.fmt.block_align = files[i].header.fmt.num_channels *
files[i].header.fmt.bits_per_sample / 8;
files[i].header.data.subchunk_id = HEADER_DATA;
fwrite(&files[i].header, sizeof(struct wave), 1, files[i].fd);
return i;
}
void finalize_wave_files(struct wave_files *files)
{
uint32_t i, chunk_size;
/* fill the header at the beginning of each file */
/* and close all opened files */
/* check wave struct to understand the offsets */
for (i = 0; i < FILES_LIMIT; i++) {
if (files[i].fd) {
chunk_size = files[i].size + sizeof(struct wave) -
offsetof(struct riff_chunk, format);
fseek(files[i].fd, sizeof(uint32_t), SEEK_SET);
fwrite(&chunk_size, sizeof(uint32_t), 1, files[i].fd);
fseek(files[i].fd, sizeof(struct wave) -
offsetof(struct data_subchunk, subchunk_size),
SEEK_SET);
fwrite(&files[i].size, sizeof(uint32_t), 1, files[i].fd);
fclose(files[i].fd);
}
}
}
int validate_data_packet(struct probe_data_packet *data_packet)
{
uint32_t received_crc;
uint32_t calc_crc;
received_crc = data_packet->checksum;
data_packet->checksum = 0;
calc_crc = crc32(0, (char *)data_packet, sizeof(*data_packet));
if (received_crc == calc_crc) {
return 0;
} else {
fprintf(stderr, "error: data packet for buffer %d is not valid: crc32: %d/%d\n",
data_packet->buffer_id, calc_crc, received_crc);
return -EINVAL;
}
}
void parse_data(char *file_in)
{
FILE *fd_in;
struct wave_files files[FILES_LIMIT];
struct probe_data_packet *packet;
uint32_t data[DATA_READ_LIMIT];
uint32_t total_data_to_copy = 0;
uint32_t data_to_copy = 0;
uint32_t *w_ptr;
int i, j, file;
enum p_state state = READY;
fprintf(stdout, "%s:\t Parsing file: %s\n", APP_NAME, file_in);
fd_in = fopen(file_in, "rb");
if (!fd_in) {
fprintf(stderr, "error: unable to open file %s, error %d\n",
file_in, errno);
exit(0);
}
packet = malloc(PACKET_MAX_SIZE);
if (!packet) {
fprintf(stderr, "error: allocation failed, err %d\n",
errno);
fclose(fd_in);
exit(0);
}
memset(&data, 0, sizeof(uint32_t) * DATA_READ_LIMIT);
memset(&files, 0, sizeof(struct wave_files) * FILES_LIMIT);
/* data read loop to process DATA_READ_LIMIT bytes at each iteration */
do {
i = fread(&data, sizeof(uint32_t), DATA_READ_LIMIT, fd_in);
/* processing all loaded bytes */
for (j = 0; j < i; j++) {
/* SYNC received */
if (data[j] == PROBE_EXTRACT_SYNC_WORD) {
if (state != READY) {
fprintf(stderr, "error: wrong state %d, err %d\n",
state, errno);
free(packet);
exit(0);
}
memset(packet, 0, PACKET_MAX_SIZE);
/* request to copy full data packet */
total_data_to_copy = sizeof(struct probe_data_packet) /
sizeof(uint32_t);
w_ptr = (uint32_t *)packet;
state = SYNC;
}
/* data copying section */
if (total_data_to_copy > 0) {
/* check if there is enough bytes loaded */
/* or copy partially if not */
if (j + total_data_to_copy > i) {
data_to_copy = i - j;
total_data_to_copy -= data_to_copy;
} else {
data_to_copy = total_data_to_copy;
total_data_to_copy = 0;
}
memcpy(w_ptr, data + j, data_to_copy * sizeof(uint32_t));
w_ptr += data_to_copy;
j += data_to_copy - 1;
}
if (total_data_to_copy == 0) {
switch (state) {
case READY:
break;
case SYNC:
/* SYNC -> CHECK */
/* request to copy data_size from probe packet */
total_data_to_copy = packet->data_size_bytes /
sizeof(uint32_t);
if (packet->data_size_bytes > PACKET_MAX_SIZE)
packet = realloc(packet,
sizeof(struct probe_data_packet) +
packet->data_size_bytes);
w_ptr = (uint32_t *)&packet->data;
state = CHECK;
break;
case CHECK:
/* CHECK -> READY */
/* find corresponding file and save data if valid */
if (validate_data_packet(packet) == 0) {
file = get_buffer_file(files,
packet->buffer_id);
if (file < 0)
file = init_wave(files,
packet->buffer_id,
packet->format);
fwrite(packet->data,
sizeof(uint32_t),
packet->data_size_bytes /
sizeof(uint32_t),
files[file].fd);
files[file].size += packet->data_size_bytes;
}
state = READY;
break;
}
}
}
} while (i > 0);
/* all done, can close files */
finalize_wave_files(files);
free(packet);
fclose(fd_in);
fprintf(stdout, "%s:\t done\n", APP_NAME);
}
int main(int argc, char *argv[])
{
int opt;
while ((opt = getopt(argc, argv, "hp:")) != -1) {
switch (opt) {
case 'p':
parse_data(optarg);
break;
case 'h':
default:
usage();
}
}
return 0;
}