sof/tools/tune/crossover/crossover_gen_coefs.m

115 lines
3.3 KiB
Matlab

function crossover = crossover_gen_coefs(fs, fc_low, fc_mid, fc_high);
addpath ./../eq/
switch nargin
case 2, crossover = crossover_generate_2way(fs, fc_low);
case 3, crossover = crossover_generate_3way(fs, fc_low, fc_mid);
case 4, crossover = crossover_generate_4way(fs, fc_low, fc_mid, fc_high);
otherwise, error("Invalid number of arguments");
end
rmpath ./../eq
end
function crossover_2way = crossover_generate_2way(fs, fc);
crossover_2way.lp = [lp_iir(fs, fc, 0)];
crossover_2way.hp = [hp_iir(fs, fc, 0)];
end
function crossover_3way = crossover_generate_3way(fs, fc_low, fc_high);
% Duplicate one set of coefficients. The duplicate set will be used to merge back the
% output that is out of phase.
crossover_3way.lp = [lp_iir(fs, fc_low, 0) lp_iir(fs, fc_high, 0) lp_iir(fs, fc_high, 0)];
crossover_3way.hp = [hp_iir(fs, fc_low, 0) hp_iir(fs, fc_high, 0) hp_iir(fs, fc_high, 0)];
end
function crossover_4way = crossover_generate_4way(fs, fc_low, fc_mid, fc_high);
crossover_4way.lp = [lp_iir(fs, fc_low, 0) lp_iir(fs, fc_mid, 0) lp_iir(fs, fc_high, 0)];
crossover_4way.hp = [hp_iir(fs, fc_low, 0) hp_iir(fs, fc_mid, 0) hp_iir(fs, fc_high, 0)];
end
% Generate the a,b coefficients for a second order
% low pass butterworth filter
function lp = lp_iir(fs, fc, gain_db)
[lp.b, lp.a] = low_pass_2nd_resonance(fc, 0, fs);
end
% Generate the a,b coefficients for a second order
% low pass butterworth filter
function hp = hp_iir(fs, fc, gain_db)
[hp.b, hp.a] = high_pass_2nd_resonance(fc, 0, fs);
end
function [b, a] = high_pass_2nd_resonance(f, resonance, fs)
cutoff = f/(fs/2);
% Limit cutoff to 0 to 1.
cutoff = max(0.0, min(cutoff, 1.0));
if cutoff == 1 || cutoff == 0
% When cutoff is one, the z-transform is 0.
% When cutoff is zero, we need to be careful because the above
% gives a quadratic divided by the same quadratic, with poles
% and zeros on the unit circle in the same place. When cutoff
% is zero, the z-transform is 1.
b = [1 - cutoff, 0, 0];
a = [1, 0, 0];
return;
endif
% Compute biquad coefficients for highpass filter
resonance = max(0.0, resonance); % can't go negative
g = 10.0^(0.05 * resonance);
d = sqrt((4 - sqrt(16 - 16 / (g * g))) / 2);
theta = pi * cutoff;
sn = 0.5 * d * sin(theta);
beta = 0.5 * (1 - sn) / (1 + sn);
gamma = (0.5 + beta) * cos(theta);
alpha = 0.25 * (0.5 + beta + gamma);
b0 = 2 * alpha;
b1 = 2 * -2 * alpha;
b2 = 2 * alpha;
a1 = 2 * -gamma;
a2 = 2 * beta;
b = [b0, b1, b2];
a = [1.0, a1, a2];
end
function [b, a] = low_pass_2nd_resonance(f, resonance, fs)
cutoff = f/(fs/2);
% Limit cutoff to 0 to 1.
cutoff = max(0.0, min(cutoff, 1.0));
if cutoff == 1 || cutoff == 0
% When cutoff is 1, the z-transform is 1.
% When cutoff is zero, nothing gets through the filter, so set
% coefficients up correctly.
b = [cutoff, 0, 0];
a = [1, 0, 0];
return;
endif
% Compute biquad coefficients for lowpass filter
resonance = max(0.0, resonance); % can't go negative
g = 10.0^(0.05 * resonance);
d = sqrt((4 - sqrt(16 - 16 / (g * g))) / 2);
theta = pi * cutoff;
sn = 0.5 * d * sin(theta);
beta = 0.5 * (1 - sn) / (1 + sn);
gamma = (0.5 + beta) * cos(theta);
alpha = 0.25 * (0.5 + beta - gamma);
b0 = 2 * alpha;
b1 = 2 * 2 * alpha;
b2 = 2 * alpha;
a1 = 2 * -gamma;
a2 = 2 * beta;
b = [b0, b1, b2];
a = [1.0, a1, a2];
end