sof/xtos/include/sof/lib/dma.h

595 lines
16 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright(c) 2016 Intel Corporation. All rights reserved.
*
* Author: Liam Girdwood <liam.r.girdwood@linux.intel.com>
* Keyon Jie <yang.jie@linux.intel.com>
*/
/**
* \file xtos/include/sof/lib/dma.h
* \brief DMA Drivers definition
* \author Liam Girdwood <liam.r.girdwood@linux.intel.com>
* \author Keyon Jie <yang.jie@linux.intel.com>
*/
#ifndef __SOF_LIB_DMA_H__
#define __SOF_LIB_DMA_H__
#include <platform/lib/dma.h>
#include <rtos/atomic.h>
#include <rtos/bit.h>
#include <rtos/alloc.h>
#include <sof/lib/io.h>
#include <sof/lib/memory.h>
#include <rtos/sof.h>
#include <rtos/spinlock.h>
#include <stdbool.h>
#include <stddef.h>
#include <stdint.h>
#ifdef __ZEPHYR__
#include <zephyr/device.h>
#include <zephyr/drivers/dma.h>
#endif
struct comp_buffer;
/** \addtogroup sof_dma_drivers DMA Drivers
* DMA Drivers API specification.
* @{
*/
/* DMA direction bitmasks used to define DMA copy direction */
#define DMA_DIR_MEM_TO_MEM BIT(0) /**< local memory copy */
#define DMA_DIR_HMEM_TO_LMEM BIT(1) /**< host memory to local mem copy */
#define DMA_DIR_LMEM_TO_HMEM BIT(2) /**< local mem to host mem copy */
#define DMA_DIR_MEM_TO_DEV BIT(3) /**< local mem to dev copy */
#define DMA_DIR_DEV_TO_MEM BIT(4) /**< dev to local mem copy */
#define DMA_DIR_DEV_TO_DEV BIT(5) /**< dev to dev copy */
/* DMA capabilities bitmasks used to define the type of DMA */
#define DMA_CAP_HDA BIT(0) /**< HDA DMA */
#define DMA_CAP_GP_LP BIT(1) /**< GP LP DMA */
#define DMA_CAP_GP_HP BIT(2) /**< GP HP DMA */
#define DMA_CAP_BT BIT(3) /**< BT DMA */
#define DMA_CAP_SP BIT(4) /**< SP DMA */
#define DMA_CAP_DMIC BIT(5) /**< ACP DMA DMIC > */
#define DMA_CAP_SP_VIRTUAL BIT(6) /**< SP VIRTUAL DMA */
#define DMA_CAP_HS_VIRTUAL BIT(7) /**< HS VIRTUAL DMA */
#define DMA_CAP_HS BIT(8) /**< HS DMA */
#define DMA_CAP_SW BIT(9) /**< SW DMA */
/* DMA dev type bitmasks used to define the type of DMA */
#define DMA_DEV_HOST BIT(0) /**< connectable to host */
#define DMA_DEV_HDA BIT(1) /**< connectable to HD/A link */
#define DMA_DEV_SSP BIT(2) /**< connectable to SSP fifo */
#define DMA_DEV_DMIC BIT(3) /**< connectable to DMIC fifo */
#define DMA_DEV_SSI BIT(4) /**< connectable to SSI / SPI fifo */
#define DMA_DEV_ALH BIT(5) /**< connectable to ALH link */
#define DMA_DEV_SAI BIT(6) /**< connectable to SAI fifo */
#define DMA_DEV_ESAI BIT(7) /**< connectable to ESAI fifo */
#define DMA_DEV_BT BIT(8) /**< connectable to ACP BT I2S */
#define DMA_DEV_SP BIT(9) /**< connectable to ACP SP I2S */
#define DMA_DEV_AFE_MEMIF BIT(10) /**< connectable to AFE fifo */
#define DMA_DEV_SP_VIRTUAL BIT(11) /**< connectable to ACP SP VIRTUAL I2S */
#define DMA_DEV_HS_VIRTUAL BIT(12) /**< connectable to ACP HS VIRTUAL I2S */
#define DMA_DEV_HS BIT(13) /**< connectable to ACP HS I2S */
#define DMA_DEV_MICFIL BIT(14) /**< connectable to MICFIL fifo */
#define DMA_DEV_SW BIT(15) /**< connectable to ACP SW */
/* DMA access privilege flag */
#define DMA_ACCESS_EXCLUSIVE 1
#define DMA_ACCESS_SHARED 0
/* DMA copy flags */
#define DMA_COPY_BLOCKING BIT(0)
#define DMA_COPY_ONE_SHOT BIT(1)
/* We will use this enum in cb handler to inform dma what
* action we need to perform.
*/
enum dma_cb_status {
DMA_CB_STATUS_RELOAD = 0,
DMA_CB_STATUS_END,
};
/* DMA interrupt commands */
enum dma_irq_cmd {
DMA_IRQ_STATUS_GET = 0,
DMA_IRQ_CLEAR,
DMA_IRQ_MASK,
DMA_IRQ_UNMASK
};
#define DMA_CHAN_INVALID 0xFFFFFFFF
#define DMA_CORE_INVALID 0xFFFFFFFF
/* Attributes have been ported to Zephyr. This condition is necessary until full support of
* CONFIG_SOF_ZEPHYR_STRICT_HEADERS.
*/
#ifndef CONFIG_ZEPHYR_NATIVE_DRIVERS
/* DMA attributes */
#define DMA_ATTR_BUFFER_ALIGNMENT 0
#define DMA_ATTR_COPY_ALIGNMENT 1
#define DMA_ATTR_BUFFER_ADDRESS_ALIGNMENT 2
#define DMA_ATTR_BUFFER_PERIOD_COUNT 3
#endif
struct dma;
/**
* \brief Element of SG list (as array item).
*/
struct dma_sg_elem {
uint32_t src; /**< source address */
uint32_t dest; /**< destination address */
uint32_t size; /**< size (in bytes) */
};
/**
* \brief Data used in DMA callbacks.
*/
struct dma_cb_data {
struct dma_chan_data *channel;
struct dma_sg_elem elem;
enum dma_cb_status status;
};
/**
* \brief SG elem array.
*/
struct dma_sg_elem_array {
uint32_t count; /**< number of elements in elems */
struct dma_sg_elem *elems; /**< elements */
};
/* DMA physical SG params */
struct dma_sg_config {
uint32_t src_width; /* in bytes */
uint32_t dest_width; /* in bytes */
uint32_t burst_elems;
uint32_t direction;
uint32_t src_dev;
uint32_t dest_dev;
uint32_t cyclic; /* circular buffer */
uint64_t period;
struct dma_sg_elem_array elem_array; /* array of dma_sg elems */
bool scatter;
bool irq_disabled;
/* true if configured DMA channel is the scheduling source */
bool is_scheduling_source;
};
struct dma_chan_status {
uint32_t state;
uint32_t flags;
uint32_t w_pos;
uint32_t r_pos;
uint32_t timestamp;
/* dma position info for ipc4 */
void *ipc_posn_data;
};
/* DMA operations */
struct dma_ops {
struct dma_chan_data *(*channel_get)(struct dma *dma,
unsigned int req_channel);
void (*channel_put)(struct dma_chan_data *channel);
int (*start)(struct dma_chan_data *channel);
int (*stop)(struct dma_chan_data *channel);
int (*stop_delayed)(struct dma_chan_data *channel);
int (*copy)(struct dma_chan_data *channel, int bytes, uint32_t flags);
int (*pause)(struct dma_chan_data *channel);
int (*release)(struct dma_chan_data *channel);
int (*status)(struct dma_chan_data *channel,
struct dma_chan_status *status, uint8_t direction);
int (*set_config)(struct dma_chan_data *channel,
struct dma_sg_config *config);
int (*probe)(struct dma *dma);
int (*remove)(struct dma *dma);
int (*get_data_size)(struct dma_chan_data *channel, uint32_t *avail,
uint32_t *free);
int (*get_attribute)(struct dma *dma, uint32_t type, uint32_t *value);
int (*interrupt)(struct dma_chan_data *channel, enum dma_irq_cmd cmd);
};
/* DMA platform data */
struct dma_plat_data {
uint32_t id;
uint32_t dir; /* bitmask of supported copy directions */
uint32_t caps; /* bitmask of supported capabilities */
uint32_t devs; /* bitmask of supported devs */
uint32_t base;
uint32_t channels;
int irq;
const char *irq_name;
uint32_t chan_size;
const void *drv_plat_data;
#ifdef __ZEPHYR__
uint32_t period_count;
#endif
};
struct dma {
struct dma_plat_data plat_data;
struct k_spinlock lock; /**< locking mechanism */
int sref; /**< simple ref counter, guarded by lock */
const struct dma_ops *ops;
atomic_t num_channels_busy; /* number of busy channels */
struct dma_chan_data *chan; /* channels array */
#ifdef __ZEPHYR__
const struct device *z_dev; /* Zephyr driver */
#endif
void *priv_data;
};
struct dma_chan_data {
struct dma *dma;
uint32_t status;
uint32_t direction;
uint32_t desc_count;
uint32_t index;
uint32_t core;
uint64_t period; /* DMA channel's transfer period in us */
/* true if this DMA channel is the scheduling source */
bool is_scheduling_source;
/* device specific data set by the device that requests the DMA channel */
void *dev_data;
void *priv_data;
};
struct dma_info {
struct dma *dma_array;
size_t num_dmas;
};
struct audio_stream;
typedef int (*dma_process_func)(const struct audio_stream *source,
uint32_t ioffset, struct audio_stream *sink,
uint32_t ooffset, uint32_t frames);
/**
* \brief API to initialize a platform DMA controllers.
*
* \param[in] sof Pointer to firmware main context.
*/
int dmac_init(struct sof *sof);
/**
* \brief API to request a platform DMAC.
*
* Users can request DMAC based on dev type, copy direction, capabilities
* and access privilege.
* For exclusive access, ret DMAC with no channels draining.
* For shared access, ret DMAC with the least number of channels draining.
*/
struct dma *dma_get(uint32_t dir, uint32_t caps, uint32_t dev, uint32_t flags);
/**
* \brief API to release a platform DMAC.
*
* @param[in] dma DMAC to relese.
*/
void dma_put(struct dma *dma);
#define dma_set_drvdata(dma, data) \
(dma->priv_data = data)
#define dma_get_drvdata(dma) \
dma->priv_data
#define dma_base(dma) \
dma->plat_data.base
#define dma_irq(dma) \
dma->plat_data.irq
#define dma_irq_name(dma) \
dma->plat_data.irq_name
#define dma_chan_size(dma) \
dma->plat_data.chan_size
#define dma_chan_base(dma, chan) \
(dma->plat_data.base + chan * dma->plat_data.chan_size)
#define dma_chan_get_data(chan) \
((chan)->priv_data)
#define dma_chan_set_data(chan, data) \
((chan)->priv_data = data)
/* DMA API
* Programming flow is :-
*
* 1) dma_channel_get()
* 2) notifier_register()
* 3) dma_set_config()
* 4) dma_start()
* ... DMA now running ...
* 5) dma_stop()
* 6) dma_stop_delayed()
* 7) dma_channel_put()
*/
static inline struct dma_chan_data *dma_channel_get_legacy(struct dma *dma,
int req_channel)
{
if (!dma || !dma->ops || !dma->ops->channel_get)
return NULL;
struct dma_chan_data *chan = dma->ops->channel_get(dma, req_channel);
return chan;
}
static inline void dma_channel_put_legacy(struct dma_chan_data *channel)
{
channel->dma->ops->channel_put(channel);
}
static inline int dma_start_legacy(struct dma_chan_data *channel)
{
return channel->dma->ops->start(channel);
}
static inline int dma_stop_legacy(struct dma_chan_data *channel)
{
if (channel->dma->ops->stop)
return channel->dma->ops->stop(channel);
return 0;
}
static inline int dma_stop_delayed_legacy(struct dma_chan_data *channel)
{
if (channel->dma->ops->stop_delayed)
return channel->dma->ops->stop_delayed(channel);
return 0;
}
/** \defgroup sof_dma_copy_func static int dma_copy (struct dma_chan_data * channel, int bytes, uint32_t flags)
*
* This function is in a separate subgroup to solve a name clash with
* struct dma_copy {}
* @{
*/
static inline int dma_copy_legacy(struct dma_chan_data *channel, int bytes,
uint32_t flags)
{
return channel->dma->ops->copy(channel, bytes, flags);
}
/** @} */
static inline int dma_pause_legacy(struct dma_chan_data *channel)
{
if (channel->dma->ops->pause)
return channel->dma->ops->pause(channel);
return 0;
}
static inline int dma_release_legacy(struct dma_chan_data *channel)
{
if (channel->dma->ops->release)
return channel->dma->ops->release(channel);
return 0;
}
static inline int dma_status_legacy(struct dma_chan_data *channel,
struct dma_chan_status *status, uint8_t direction)
{
return channel->dma->ops->status(channel, status, direction);
}
static inline int dma_set_config_legacy(struct dma_chan_data *channel,
struct dma_sg_config *config)
{
return channel->dma->ops->set_config(channel, config);
}
static inline int dma_probe_legacy(struct dma *dma)
{
return dma->ops->probe(dma);
}
static inline int dma_remove_legacy(struct dma *dma)
{
return dma->ops->remove(dma);
}
static inline int dma_get_data_size_legacy(struct dma_chan_data *channel,
uint32_t *avail, uint32_t *free)
{
return channel->dma->ops->get_data_size(channel, avail, free);
}
static inline int dma_get_attribute_legacy(struct dma *dma, uint32_t type,
uint32_t *value)
{
return dma->ops->get_attribute(dma, type, value);
}
static inline int dma_interrupt_legacy(struct dma_chan_data *channel,
enum dma_irq_cmd cmd)
{
return channel->dma->ops->interrupt(channel, cmd);
}
/* DMA hardware register operations */
static inline uint32_t dma_reg_read(struct dma *dma, uint32_t reg)
{
return io_reg_read(dma_base(dma) + reg);
}
static inline uint16_t dma_reg_read16(struct dma *dma, uint32_t reg)
{
return io_reg_read16(dma_base(dma) + reg);
}
static inline void dma_reg_write(struct dma *dma, uint32_t reg, uint32_t value)
{
io_reg_write(dma_base(dma) + reg, value);
}
static inline void dma_reg_write16(struct dma *dma, uint32_t reg,
uint16_t value)
{
io_reg_write16(dma_base(dma) + reg, value);
}
static inline void dma_reg_update_bits(struct dma *dma, uint32_t reg,
uint32_t mask, uint32_t value)
{
io_reg_update_bits(dma_base(dma) + reg, mask, value);
}
static inline uint32_t dma_chan_reg_read(struct dma_chan_data *channel,
uint32_t reg)
{
return io_reg_read(dma_chan_base(channel->dma, channel->index) + reg);
}
static inline uint16_t dma_chan_reg_read16(struct dma_chan_data *channel,
uint32_t reg)
{
return io_reg_read16(dma_chan_base(channel->dma, channel->index) + reg);
}
static inline void dma_chan_reg_write(struct dma_chan_data *channel,
uint32_t reg, uint32_t value)
{
io_reg_write(dma_chan_base(channel->dma, channel->index) + reg, value);
}
static inline void dma_chan_reg_write16(struct dma_chan_data *channel,
uint32_t reg, uint16_t value)
{
io_reg_write16(dma_chan_base(channel->dma, channel->index) + reg,
value);
}
static inline void dma_chan_reg_update_bits(struct dma_chan_data *channel,
uint32_t reg, uint32_t mask,
uint32_t value)
{
io_reg_update_bits(dma_chan_base(channel->dma, channel->index) + reg,
mask, value);
}
static inline void dma_chan_reg_update_bits16(struct dma_chan_data *channel,
uint32_t reg, uint16_t mask,
uint16_t value)
{
io_reg_update_bits16(dma_chan_base(channel->dma, channel->index) + reg,
mask, value);
}
static inline bool dma_is_scheduling_source(struct dma_chan_data *channel)
{
return channel->is_scheduling_source;
}
static inline void dma_sg_init(struct dma_sg_elem_array *ea)
{
ea->count = 0;
ea->elems = NULL;
}
int dma_sg_alloc(struct dma_sg_elem_array *ea,
enum mem_zone zone,
uint32_t direction,
uint32_t buffer_count, uint32_t buffer_bytes,
uintptr_t dma_buffer_addr, uintptr_t external_addr);
void dma_sg_free(struct dma_sg_elem_array *ea);
/**
* \brief Get the total size of SG buffer
*
* \param ea Array of SG elements.
* \return Size of the buffer.
*/
static inline uint32_t dma_sg_get_size(struct dma_sg_elem_array *ea)
{
int i;
uint32_t size = 0;
for (i = 0 ; i < ea->count; i++)
size += ea->elems[i].size;
return size;
}
struct audio_stream;
typedef void (*dma_process)(const struct audio_stream *,
struct audio_stream *, uint32_t);
/* copies data from DMA buffer using provided processing function */
int dma_buffer_copy_from(struct comp_buffer *source,
struct comp_buffer *sink,
dma_process_func process, uint32_t source_bytes);
/*
* Used when copying DMA buffer bytes into multiple sink buffers, one at a time using the provided
* conversion function. DMA buffer consume should be performed after the data has been copied
* to all sinks.
*/
int dma_buffer_copy_from_no_consume(struct comp_buffer *source,
struct comp_buffer *sink,
dma_process_func process, uint32_t source_bytes);
/* copies data to DMA buffer using provided processing function */
int dma_buffer_copy_to(struct comp_buffer *source,
struct comp_buffer *sink,
dma_process_func process, uint32_t sink_bytes);
/* generic DMA DSP <-> Host copier */
struct dma_copy {
struct dma_chan_data *chan;
struct dma *dmac;
};
/* init dma copy context */
int dma_copy_new(struct dma_copy *dc);
/* free dma copy context resources */
static inline void dma_copy_free(struct dma_copy *dc)
{
dma_channel_put_legacy(dc->chan);
}
/* DMA copy data from host to DSP */
int dma_copy_from_host(struct dma_copy *dc, struct dma_sg_config *host_sg,
int32_t host_offset, void *local_ptr, int32_t size);
int dma_copy_from_host_nowait(struct dma_copy *dc,
struct dma_sg_config *host_sg,
int32_t host_offset, void *local_ptr,
int32_t size);
/* DMA copy data from DSP to host */
int dma_copy_to_host(struct dma_copy *dc, struct dma_sg_config *host_sg,
int32_t host_offset, void *local_ptr, int32_t size);
int dma_copy_to_host_nowait(struct dma_copy *dc, struct dma_sg_config *host_sg,
int32_t host_offset, void *local_ptr, int32_t size);
int dma_copy_set_stream_tag(struct dma_copy *dc, uint32_t stream_tag);
static inline const struct dma_info *dma_info_get(void)
{
return sof_get()->dma_info;
}
/** @}*/
#endif /* __SOF_LIB_DMA_H__ */