sof/tools/tune/dmic/dmic_init.m

301 lines
9.0 KiB
Matlab

% prm = dmic_init(prm)
%
% Create PDM microphones interface configuration
% SPDX-License-Identifier: BSD-3-Clause
%
% Copyright (c) 2019, Intel Corporation. All rights reserved.
%
% Author: Seppo Ingalsuo <seppo.ingalsuo@linux.intel.com>
function prm = dmic_init(prm)
hw.controllers = 4;
hw.bits_cic = 26;
hw.bits_fir_coef = 20;
hw.bits_fir_gain = 20;
hw.bits_fir_input = 22;
hw.bits_fir_output = 24;
hw.bits_fir_internal = 26;
hw.bits_gain_output = 22;
hw.cic_shift_right_range = [-8 4];
hw.fir_shift_right_range = [0 8];
hw.fir_max_length = 250;
hw.version = 1;
hw.number_of_pdm_controllers = 2;
hw.ioclk = 19.2e6;
spec.scale = 0.95;
spec.linear_phase = 1;
spec.rp = 0.1;
spec.cp = 0.4375;
spec.cs = 0.5100;
spec.rs = 95;
if (prm.fifo_a_fs == 0) && (prm.fifo_b_fs == 0)
fprintf(1,'Error: At least one FIFO needs non-zero Fs!\n');
return;
end
%% Match modes
[a_clkdiv, a_mcic, a_mfir] = find_modes(prm, hw, prm.fifo_a_fs);
[b_clkdiv, b_mcic, b_mfir] = find_modes(prm, hw, prm.fifo_b_fs);
[common_clkdiv_list,common_mcic_list,a_mfir_list,b_mfir_list] = ...
match_modes(a_clkdiv, a_mcic, a_mfir, b_clkdiv, b_mcic, b_mfir);
if isempty(common_clkdiv_list)
error('No compatible settings were found!\n');
end
%% Set basic configuration data
cfg = get_cfg(prm, hw);
%% Done, print 1st modes combination
fprintf('Selected fifo_a_fs=%d, fifo_b_fs=%d: ', prm.fifo_a_fs, prm.fifo_b_fs);
cfg = select_mode(common_mcic_list, a_mfir_list, b_mfir_list, common_clkdiv_list, cfg);
cfg = get_cic_config(cfg, hw);
prm = get_fir_config(prm, cfg, hw, spec);
end
%% Functions
%% Get FIR filters
function prm = get_fir_config(prm, cfg, hw, spec)
if prm.fifo_a_fs > 0
fir = get_fir(cfg.mfir_a, cfg, hw, spec);
dmic_fir_export(fir, 'include');
prm.vfn = dmic_fir_export_alsa(fir, 'include_alsa_utils', prm.vfn);
end
if prm.fifo_b_fs > 0
fir = get_fir(cfg.mfir_b, cfg, hw, spec);
dmic_fir_export(fir, 'include');
prm.vfn = dmic_fir_export_alsa(fir, 'include_alsa_utils', prm.vfn);
end
end
function fir = get_fir(mfir, cfg, hw, spec)
fs_fir = cfg.mic_clk/cfg.mcic;
fs = fs_fir/mfir;
passhz = spec.cp * fs;
stophz = spec.cs * fs;
max_length = min(hw.fir_max_length, floor(hw.ioclk/fs/2-5));
[ coef, shift, bw, sb, rs, got_pb, got_sb, passed] = ...
dmic_fir(spec.rp, spec.rs, passhz, stophz, cfg.mic_clk, fs_fir, max_length, spec.linear_phase);
if passed == 0
fprintf(1, 'Warning: Filter specification was reduced.\n');
if (got_pb > 1) || (got_sb > -60)
error('The design is erroneous.');
end
end
coef32 = round(2^31 * coef);
fir.length = length(coef32);
fir.coef = coef32;
fir.shift = shift;
cp = bw/fs;
cs = sb/fs;
fir.cp = cp;
fir.cs = cs;
fir.rp = spec.rp;
fir.rs = rs;
fir.m = mfir;
end
%% Select one mode from possible combinations
function cfg = select_mode(common_mcic_list, a_mfir_list, b_mfir_list, common_clkdiv_list, cfg)
cfg.mcic = 0;
cfg.mfir_a = 0;
cfg.mfir_b = 0;
cfg.clk_div = 0;
% Order of preference for FIR decimation factors, prime numbers
% even if low value, are less preferable due to incompatibility
% with other FIR decimation factor.
mpref = [2 4 6 8 3 5 7 9 10 11 12 13 14 15];
% Find common mode with lowest FIR decimation ratio. If there are many
% select one with lowest mic clock rate. Lowest rates or highest dividers
% are in the end of list.
if ~isempty(common_mcic_list)
for mtry = mpref
idx = find(a_mfir_list == mtry);
if ~isempty(idx)
n = idx(end);
break;
end
end
cfg.mcic = common_mcic_list(n);
cfg.clk_div = common_clkdiv_list(n);
if a_mfir_list(1) > 0
cfg.mfir_a = a_mfir_list(n);
end
if b_mfir_list(1) > 0
cfg.mfir_b = b_mfir_list(n);
end
fprintf(1, 'clk_div=%d, cic=%d, fir_a=%d, fir_b=%d\n', ...
cfg.clk_div, cfg.mcic, cfg.mfir_a, cfg.mfir_b);
end
end
%% Compute CIC filter settings
function cfg = get_cic_config(cfg, hw)
cfg.mic_clk = hw.ioclk/cfg.clk_div;
g_cic = cfg.mcic^5;
bitsneeded = floor(log(g_cic)/log(2)+1)+1;
cfg.cic_shift = bitsneeded - hw.bits_fir_input;
if hw.bits_cic < bitsneeded
fprintf(1,'Error: Needed CIC word length is exceeded %d\n', bitsneeded);
end
if cfg.cic_shift < hw.cic_shift_right_range(1)
fprintf(1,'Warning: Limited CIC shift right from %d', cfg.cic_shift);
cfg.cic_shift = hw.cic_shift_right_range(1);
end
if cfg.cic_shift > hw.cic_shift_right_range(2)
fprintf(1,'Error: Limited CIC shift right from %d', cfg.cic_shift);
cfg.cic_shift = hw.cic_shift_right_range(2);
end
% Compute how much gain is left for FIR from scaling to full scale
cfg.remain_gain_to_fir = 2^(hw.bits_fir_input-1)/(g_cic/2^cfg.cic_shift);
end
%% Find modes those are possible and exist in setup database
function [clkdiv, mcic, mfir] = find_modes(prm, hw, pcm_fs)
if pcm_fs < 1
clkdiv = 0;
mcic = 0;
mfir = 0;
return;
end
osr_min = 50;
if pcm_fs > 48e3
osr_min = floor(3.0e6 / pcm_fs);
end
mcic_min = 5;
mcic_max = 31; % 8 bits reg but CIC gain and 26 bits implementation limits this
mfir_min = 2;
mfir_max = 15;
clkdiv_min = ceil(hw.ioclk/prm.pdmclk_max);
clkdiv_max = floor(hw.ioclk/prm.pdmclk_min);
n = 1;
clkdiv = [];
mcic = [];
mfir = [];
% Highest to lowest PDM clock, prefer best quality in range
for clkdiv_test = clkdiv_min:clkdiv_max
if clkdiv_test > 4 % Limitation in cAVS1.5-2.0
c1 = floor(clkdiv_test/2);
c2 = clkdiv_test - c1;
du_min = 100*c1/clkdiv_test;
du_max = 100*c2/clkdiv_test;
pdmclk = hw.ioclk/clkdiv_test;
osr = round(pdmclk/pcm_fs);
% Lowest FIR decimation to highest, prefer low FIR
% decimation ratios
for mfir_test = mfir_min:osr
mcic_test = floor(osr/mfir_test);
if (abs(pcm_fs*mfir_test*mcic_test -pdmclk) < 1) ...
&& (osr >= osr_min) ...
&& (mcic_test >= mcic_min) ...
&& (mcic_test <= mcic_max) ...
&& (mfir_test <= mfir_max) ...
&& (du_min >= prm.duty_min) ...
&& (du_max <= prm.duty_max)
sfir = sprintf('FIR %d x %d x %dHz', ...
mcic_test, mfir_test, round(pcm_fs));
%fprintf('Found: %s\n',sfir);
clkdiv(n) = clkdiv_test;
mcic(n) = mcic_test;
mfir(n) = mfir_test;
n=n+1;
end
end
end
end
end
%% Match found modes for common clkdiv and mcic, a DMIC hardware constraint
function [common_clkdiv_list,common_mcic_list,a_mfir_list,b_mfir_list] = ...
match_modes(a_clkdiv, a_mcic, a_mfir, b_clkdiv, b_mcic, b_mfir)
if b_clkdiv == 0
common_clkdiv_list = a_clkdiv;
common_mcic_list = a_mcic;
a_mfir_list = a_mfir;
b_mfir_list = 0;
return;
end
common_clkdiv_list = [];
common_mcic_list = [];
a_mfir_list = [];
b_mfir_list = [];
n_list = 1;
for n=1:length(a_clkdiv)
idx = find(b_clkdiv == a_clkdiv(n));
for m=1:length(idx)
if b_mcic(idx(m)) == a_mcic(n)
common_clkdiv = a_clkdiv(n);
common_mcic = a_mcic(n);
common_clkdiv_list(n_list) = common_clkdiv;
common_mcic_list(n_list) = common_mcic;
a_mfir_list(n_list) = a_mfir(n);
b_mfir_list(n_list) = b_mfir(idx(m));
fprintf('Option %d: div=%d, mcic=%d, mfira=%d, mfirb=%d\n', ...
n_list, common_clkdiv, common_mcic, ...
a_mfir_list(n_list), b_mfir_list(n_list));
n_list = n_list+1;
end
end
end
end
%% Misc blob details needed
function cfg = get_cfg(prm, hw)
% if FIFO A or B is disabled, append a dummy blob to keep modes matching
% code happy with identical A and B request
if (prm.fifo_a_fs == 0) && (prm.fifo_b_fs == 0)
fprintf('Error: FIFO A or B need to be assigned a nonzero samplerate\n');
return;
end
cfg.hw_version = hw.version;
cfg.fifo_a_fs = prm.fifo_a_fs;
cfg.fifo_b_fs = prm.fifo_b_fs;
cfg.pdm01_provided = (prm.pdm(1).enable_mic_a | prm.pdm(1).enable_mic_b) ...
+ (prm.pdm(2).enable_mic_a | prm.pdm(2).enable_mic_b)*2;
cfg.ch01_provided = (prm.fifo_a_fs > 0) + (prm.fifo_b_fs > 0)*2;
if prm.fifo_a_fs > 0
cfg.a_nchannels = prm.pdm(1).enable_mic_a + prm.pdm(1).enable_mic_b ...
+ prm.pdm(2).enable_mic_a + prm.pdm(2).enable_mic_b;
else
cfg.a_nchannels = 0;
end
if prm.fifo_b_fs > 0
cfg.b_nchannels = prm.pdm(1).enable_mic_a + prm.pdm(1).enable_mic_b ...
+ prm.pdm(2).enable_mic_a + prm.pdm(2).enable_mic_b;
else
cfg.b_nchannels = 0;
end
end