sof/zephyr/lib/cpu.c

308 lines
7.1 KiB
C

// SPDX-License-Identifier: BSD-3-Clause
//
// Copyright(c) 2022 Intel Corporation. All rights reserved.
//
// Author: Tomasz Leman <tomasz.m.leman@intel.com>
/**
* \file
* \brief Zephyr RTOS CPU implementation file
* \authors Tomasz Leman <tomasz.m.leman@intel.com>
*/
#include <sof/init.h>
#include <sof/lib/cpu.h>
#include <sof/lib/pm_runtime.h>
#include <ipc/topology.h>
#include <rtos/alloc.h>
/* Zephyr includes */
#include <version.h>
#include <zephyr/kernel.h>
#include <zephyr/device.h>
#include <zephyr/drivers/mm/mm_drv_intel_adsp_mtl_tlb.h>
#if CONFIG_MULTICORE && CONFIG_SMP
extern K_KERNEL_STACK_ARRAY_DEFINE(z_interrupt_stacks, CONFIG_MP_MAX_NUM_CPUS,
CONFIG_ISR_STACK_SIZE);
static atomic_t start_flag;
static atomic_t ready_flag;
/* Zephyr kernel_internal.h interface */
extern void smp_timer_init(void);
static FUNC_NORETURN void secondary_init(void *arg)
{
struct k_thread dummy_thread;
/*
* This is an open-coded version of zephyr/kernel/smp.c
* smp_init_top(). We do this so that we can call SOF
* secondary_core_init() for each core.
*/
atomic_set(&ready_flag, 1);
z_smp_thread_init(arg, &dummy_thread);
smp_timer_init();
secondary_core_init(sof_get());
#ifdef CONFIG_THREAD_STACK_INFO
dummy_thread.stack_info.start = (uintptr_t)z_interrupt_stacks +
arch_curr_cpu()->id * Z_KERNEL_STACK_LEN(CONFIG_ISR_STACK_SIZE);
dummy_thread.stack_info.size = Z_KERNEL_STACK_LEN(CONFIG_ISR_STACK_SIZE);
#endif
z_smp_thread_swap();
CODE_UNREACHABLE; /* LCOV_EXCL_LINE */
}
#if CONFIG_ZEPHYR_NATIVE_DRIVERS
#include <sof/trace/trace.h>
#include <rtos/wait.h>
LOG_MODULE_DECLARE(zephyr, CONFIG_SOF_LOG_LEVEL);
extern struct tr_ctx zephyr_tr;
/* address where zephyr PM will save memory during D3 transition */
#ifdef CONFIG_ADSP_IMR_CONTEXT_SAVE
extern void *global_imr_ram_storage;
#endif
void cpu_notify_state_entry(enum pm_state state)
{
if (!cpu_is_primary(arch_proc_id()))
return;
if (state == PM_STATE_SOFT_OFF) {
#ifdef CONFIG_ADSP_IMR_CONTEXT_SAVE
size_t storage_buffer_size;
/* allocate IMR global_imr_ram_storage */
const struct device *tlb_dev = DEVICE_DT_GET(DT_NODELABEL(tlb));
__ASSERT_NO_MSG(tlb_dev);
const struct intel_adsp_tlb_api *tlb_api =
(struct intel_adsp_tlb_api *)tlb_dev->api;
/* get HPSRAM storage buffer size */
storage_buffer_size = tlb_api->get_storage_size();
/* add space for LPSRAM */
storage_buffer_size += LP_SRAM_SIZE;
/* allocate IMR buffer and store it in the global pointer */
global_imr_ram_storage = rmalloc(SOF_MEM_ZONE_SYS_RUNTIME,
0,
SOF_MEM_CAPS_L3,
storage_buffer_size);
#endif /* CONFIG_ADSP_IMR_CONTEXT_SAVE */
}
}
/* notifier called after every power state transition */
void cpu_notify_state_exit(enum pm_state state)
{
if (state == PM_STATE_SOFT_OFF) {
#if CONFIG_MULTICORE
if (!cpu_is_primary(arch_proc_id())) {
/* Notifying primary core that secondary core successfully exit the D3
* state and is back in the Idle thread.
*/
atomic_set(&ready_flag, 1);
return;
}
#endif
#ifdef CONFIG_ADSP_IMR_CONTEXT_SAVE
/* free global_imr_ram_storage */
rfree(global_imr_ram_storage);
global_imr_ram_storage = NULL;
/* send FW Ready message */
platform_boot_complete(0);
#endif
}
}
int cpu_enable_core(int id)
{
/* only called from single core, no RMW lock */
__ASSERT_NO_MSG(cpu_is_primary(arch_proc_id()));
/*
* This is an open-coded version of zephyr/kernel/smp.c
* z_smp_start_cpu(). We do this, so we can use a customized
* secondary_init() for SOF.
*/
if (arch_cpu_active(id))
return 0;
#if ZEPHYR_VERSION(3, 0, 99) <= ZEPHYR_VERSION_CODE
/* During kernel initialization, the next pm state is set to ACTIVE. By checking this
* value, we determine if this is the first core boot, if not, we need to skip idle thread
* initialization. By reinitializing the idle thread, we would overwrite the kernel structs
* and the idle thread stack.
*/
if (pm_state_next_get(id)->state == PM_STATE_ACTIVE)
z_init_cpu(id);
#endif
atomic_clear(&start_flag);
atomic_clear(&ready_flag);
arch_start_cpu(id, z_interrupt_stacks[id], CONFIG_ISR_STACK_SIZE,
secondary_init, &start_flag);
while (!atomic_get(&ready_flag))
k_busy_wait(100);
atomic_set(&start_flag, 1);
return 0;
}
void cpu_disable_core(int id)
{
/* only called from single core, no RMW lock */
__ASSERT_NO_MSG(cpu_is_primary(arch_proc_id()));
if (!arch_cpu_active(id)) {
tr_warn(&zephyr_tr, "core %d is already disabled", id);
return;
}
#if defined(CONFIG_PM)
/* TODO: before requesting core shut down check if it's not actively used */
if (!pm_state_force(id, &(struct pm_state_info){PM_STATE_SOFT_OFF, 0, 0})) {
tr_err(&zephyr_tr, "failed to set PM_STATE_SOFT_OFF on core %d", id);
return;
}
/* Primary core will be turn off by the host after it enter SOFT_OFF state */
if (cpu_is_primary(id))
return;
/* Broadcasting interrupts to other cores. */
arch_sched_ipi();
uint64_t timeout = k_cycle_get_64() +
k_ms_to_cyc_ceil64(CONFIG_SECONDARY_CORE_DISABLING_TIMEOUT);
/* Waiting for secondary core to enter idle state */
while (arch_cpu_active(id) && (k_cycle_get_64() < timeout))
idelay(PLATFORM_DEFAULT_DELAY);
if (arch_cpu_active(id)) {
tr_err(&zephyr_tr, "core %d did not enter idle state", id);
return;
}
if (soc_adsp_halt_cpu(id) != 0)
tr_err(&zephyr_tr, "failed to disable core %d", id);
#endif /* CONFIG_PM */
}
int cpu_is_core_enabled(int id)
{
return arch_cpu_active(id);
}
int cpu_enabled_cores(void)
{
unsigned int i;
int mask = 0;
for (i = 0; i < CONFIG_MP_MAX_NUM_CPUS; i++)
if (arch_cpu_active(i))
mask |= BIT(i);
return mask;
}
#else
static int w_core_enable_mask = 0x1; /*Core 0 is always active*/
int cpu_enable_core(int id)
{
pm_runtime_get(PM_RUNTIME_DSP, PWRD_BY_TPLG | id);
/* only called from single core, no RMW lock */
__ASSERT_NO_MSG(cpu_get_id() == PLATFORM_PRIMARY_CORE_ID);
w_core_enable_mask |= BIT(id);
return 0;
}
int cpu_enable_secondary_core(int id)
{
/*
* This is an open-coded version of zephyr/kernel/smp.c
* z_smp_start_cpu(). We do this, so we can use a customized
* secondary_init() for SOF.
*/
if (arch_cpu_active(id))
return 0;
#if ZEPHYR_VERSION(3, 0, 99) <= ZEPHYR_VERSION_CODE
z_init_cpu(id);
#endif
atomic_clear(&start_flag);
atomic_clear(&ready_flag);
arch_start_cpu(id, z_interrupt_stacks[id], CONFIG_ISR_STACK_SIZE,
secondary_init, &start_flag);
while (!atomic_get(&ready_flag))
k_busy_wait(100);
atomic_set(&start_flag, 1);
return 0;
}
void cpu_disable_core(int id)
{
/* TODO: call Zephyr API */
/* only called from single core, no RMW lock */
__ASSERT_NO_MSG(cpu_get_id() == PLATFORM_PRIMARY_CORE_ID);
w_core_enable_mask &= ~BIT(id);
}
int cpu_is_core_enabled(int id)
{
return w_core_enable_mask & BIT(id);
}
int cpu_enabled_cores(void)
{
return w_core_enable_mask;
}
#endif /* CONFIG_ZEPHYR_NATIVE_DRIVERS */
void cpu_power_down_core(uint32_t flags)
{
/* TODO: use Zephyr version */
}
int cpu_restore_secondary_cores(void)
{
/* TODO: use Zephyr API */
return 0;
}
int cpu_secondary_cores_prepare_d0ix(void)
{
/* TODO: use Zephyr API */
return 0;
}
#endif /* CONFIG_MULTICORE && CONFIG_SMP */