function test = fr_test_input(test) %% t = fr_test_input(t) % % Create frequency sweep data file for playback & record on real device or % for algorithm simulation. % % Input parameters % t.f_max - maximum frequency of sweep, set e.g. to 0.99*fs/2 % t.fs - sample rate % t.bits_in - number of bits in signal % t.ch - mix test signal to channel ch, e.g. set to [1 2] to measure % two channels % t.nch - total number of channels in data % % Output parameters % t.fn_in - Created input file name % t.fn_out - Proposed output file name for captured output % t.f_ref - Reference frequency used to report deviation (997 Hz) % t.f_min - Sweep start frequency % t.f - Frequencies in sweep % t.is - Ignore signal from tone start % t.ie - Ignore signal from tone end % t.tr - tone gain ramp length in seconds % t.sm - Seek start marker this time length from start % t.em - Seek end marker this time length from end % t.mt - Error if marker positions delta is greater than this % t.tc - Min cycles of sine wave per frequency % t.tl - Tone length in seconds % t.a_db - Tone amplitude (dB) % t.a - Tone amplitude (lin) % t.nt - Number of samples per tone % t.nf - Number of frequencies % t.na - Number of amplitudes % t.mark_t - Length of marker tone in seconds % t.mark_a - Amplitude max of marker tone (lin) % t.mark_a_db - Amplitude max of marker tone (dB) % t.ts - Tone start times % % E.g. % t.fs=48e3; t.f_max=20e3; t.bits_in=16; t.ch=1; t.nch=2; t = fr_test_input(t); % % SPDX-License-Identifier: BSD-3-Clause % Copyright(c) 2016 Intel Corporation. All rights reserved. % Author: Seppo Ingalsuo %% Reference: AES17 6.2.3 Frequency response % http://www.aes.org/publications/standards/ if nargin < 1 fprintf('Warning, using default parameters!\n'); test.fs = 48e3; test.f_max = 0.99*test.fs/2; test.ch=1; test.nch=1; test.bits_in=32; end if test.ch == 0 test.ch = 1+round(rand(1,1)*(test.nch-1)); % Test random channel 1..Nch end fprintf('Using parameters Fmax=%.1f kHz, Fs=%.1f, ch=%d, Nch=%d, bits_in=%d\n', ... test.f_max/1e3, test.fs/1e3, test.ch, test.nch, test.bits_in); id = floor(rand(1,1) * 1e6); test.fn_in = sprintf('fr_test_in_%d.%s', id, test.fmt); test.fn_out = sprintf('fr_test_out_%d.%s', id, test.fmt); test.f_ref = 997; test.f_min = 20; %% Use a dense frequency grid to see -3 dB point well if test.quick n_oct = ceil(log(test.f_max/test.f_ref)/log(2)*6); else n_oct = ceil(log(test.f_max/test.f_ref)/log(2)*35); end f = logspace(log10(test.f_ref), log10(test.f_max), n_oct); c = f(1)/f(2); f_next = test.f_ref*c; while (f_next > test.f_min) f = [f_next f]; f_next = f_next*c; end test.f = f; %% Tone sweep parameters test.is = 20e-3; % Ignore signal from tone start test.ie = 20e-3; % Ignore signal from tone end test.tr = 10e-3; % Gain ramp time for tones test.sm = 3; % Seek start marker from 3s from start test.em = 3; % Seek end marker from 3s from end test.mt = 0.1; % Error if marker positions delta is greater than 0.1s test.tc = 10; % Min. 10 cycles of sine wave for a frequency t_min = 0.1; % Use t_min or min cycles count as tone length test.tl = max(test.tc*1/min(f),t_min); test.a_db = -20; test.a = 10.^(test.a_db/20); %% Mix the input file for test and write output test = mix_sweep(test); end