mirror of https://github.com/thesofproject/sof.git
Tools: Tune: EQ: Matlab compatibility fix for parametric EQ
Every endif is changed to end. The endif works only in Octave. Signed-off-by: Seppo Ingalsuo <seppo.ingalsuo@linux.intel.com>
This commit is contained in:
parent
a0df1a6120
commit
5aa9a9e484
|
@ -135,7 +135,7 @@ function [b, a] = peak_2nd(fhz, gdb, Q, fs)
|
|||
b = [A * A, 0, 0]
|
||||
a = [1, 0, 0];
|
||||
return;
|
||||
endif
|
||||
end
|
||||
|
||||
alpha = sin(wc)/(2*Q);
|
||||
b0 = 1 + alpha * A;
|
||||
|
@ -163,7 +163,7 @@ function [b, a] = high_pass_2nd_reasonance(f, resonance, fs)
|
|||
b = [1 - cutoff, 0, 0];
|
||||
a = [1, 0, 0];
|
||||
return;
|
||||
endif
|
||||
end
|
||||
|
||||
% Compute biquad coefficients for highpass filter
|
||||
resonance = max(0.0, resonance); % can't go negative
|
||||
|
@ -199,7 +199,7 @@ function [b, a] = low_pass_2nd_reasonance(f, resonance, fs)
|
|||
b = [cutoff, 0, 0];
|
||||
a = [1, 0, 0];
|
||||
return;
|
||||
endif
|
||||
end
|
||||
|
||||
% Compute biquad coefficients for lowpass filter
|
||||
resonance = max(0.0, resonance); % can't go negative
|
||||
|
@ -239,7 +239,7 @@ function [b, a] = band_pass_2nd(f, Q, fs)
|
|||
b = [0, 0, 0];
|
||||
a = [1, 0, 0];
|
||||
return;
|
||||
endif
|
||||
end
|
||||
if (Q <= 0)
|
||||
% When Q = 0, the above formulas have problems. If we
|
||||
% look at the z-transform, we can see that the limit
|
||||
|
@ -247,7 +247,7 @@ function [b, a] = band_pass_2nd(f, Q, fs)
|
|||
b = [1, 0, 0];
|
||||
a = [1, 0, 0];
|
||||
return;
|
||||
endif
|
||||
end
|
||||
|
||||
w0 = pi * frequency;
|
||||
alpha = sin(w0) / (2 * Q);
|
||||
|
@ -276,7 +276,7 @@ function [b, a] = notch_2nd(f, Q, fs)
|
|||
b = [1, 0, 0];
|
||||
a = [1, 0, 0];
|
||||
return;
|
||||
endif
|
||||
end
|
||||
if Q <= 0
|
||||
% When Q = 0, the above formulas have problems. If we
|
||||
% look at the z-transform, we can see that the limit
|
||||
|
@ -284,7 +284,7 @@ function [b, a] = notch_2nd(f, Q, fs)
|
|||
b = [0, 0, 0];
|
||||
a = [1, 0, 0];
|
||||
return;
|
||||
endif
|
||||
end
|
||||
|
||||
w0 = pi * frequency;
|
||||
alpha = sin(w0) / (2 * Q);
|
||||
|
@ -313,13 +313,13 @@ function [b, a] = low_shelf_2nd_google(f, db_gain, fs)
|
|||
b = [A * A, 0, 0];
|
||||
a = [1, 0, 0];
|
||||
return;
|
||||
endif
|
||||
end
|
||||
if (frequency <= 0)
|
||||
% When frequency is 0, the z-transform is 1.
|
||||
b = [1, 0, 0];
|
||||
a = [1, 0, 0];
|
||||
return;
|
||||
endif
|
||||
end
|
||||
|
||||
w0 = pi * frequency;
|
||||
S = 1; % filter slope (1 is max value)
|
||||
|
@ -353,13 +353,13 @@ function [b, a] = high_shelf_2nd_google(f, db_gain, fs)
|
|||
b = [1, 0, 0];
|
||||
a = [1, 0, 0];
|
||||
return;
|
||||
endif
|
||||
end
|
||||
if (frequency <= 0)
|
||||
% When frequency = 0, the filter is just a gain, A^2.
|
||||
b = [A * A, 0, 0];
|
||||
a = [1, 0, 0];
|
||||
return;
|
||||
endif
|
||||
end
|
||||
|
||||
w0 = pi * frequency;
|
||||
S = 1; % filter slope (1 is max value)
|
||||
|
|
Loading…
Reference in New Issue