sof/tools/tune/eq/eq_define_parametric_eq.m

396 lines
11 KiB
Mathematica
Raw Normal View History

function [z, p, k] = eq_define_parametric_eq(peq, fs)
%%
% Copyright (c) 2016, Intel Corporation
% All rights reserved.
%
% Redistribution and use in source and binary forms, with or without
% modification, are permitted provided that the following conditions are met:
% * Redistributions of source code must retain the above copyright
% notice, this list of conditions and the following disclaimer.
% * Redistributions in binary form must reproduce the above copyright
% notice, this list of conditions and the following disclaimer in the
% documentation and/or other materials provided with the distribution.
% * Neither the name of the Intel Corporation nor the
% names of its contributors may be used to endorse or promote products
% derived from this software without specific prior written permission.
%
% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
% AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
% ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
% LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
% CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
% SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
% INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
% CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
% ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
% POSSIBILITY OF SUCH DAMAGE.
%
% Author: Seppo Ingalsuo <seppo.ingalsuo@linux.intel.com>
%
% Parametric types
PEQ_HP1 = 1; PEQ_HP2 = 2; PEQ_LP1 = 3; PEQ_LP2 = 4;
PEQ_LS1 = 5; PEQ_LS2 = 6; PEQ_HS1 = 7; PEQ_HS2 = 8;
PEQ_PN2 = 9; PEQ_LP4 = 10; PEQ_HP4 = 11; PEQ_LP2G= 12;
PEQ_HP2G = 13; PEQ_BP2 = 14; PEQ_NC2 = 15; PEQ_LS2G = 16;
PEQ_HS2G = 17;
sp = size(peq);
z = [];
p = [];
k = 1;
for i=1:sp(1)
type = peq(i,1);
f = peq(i,2);
g = peq(i,3);
Q = peq(i,4);
if f < fs/2
a0 = [];
b0 = [];
z0 = [];
p0 = [];
k0 = [];
switch peq(i,1)
case PEQ_HP1, [z0, p0, k0] = butter(1, 2*f/fs, 'high');
case PEQ_HP2, [z0, p0, k0] = butter(2, 2*f/fs, 'high');
case PEQ_HP4, [z0, p0, k0] = butter(4, 2*f/fs, 'high');
case PEQ_LP1, [z0, p0, k0] = butter(1, 2*f/fs);
case PEQ_LP2, [z0, p0, k0] = butter(2, 2*f/fs);
case PEQ_LP4, [z0, p0, k0] = butter(4, 2*f/fs);
case PEQ_LS1, [b0, a0] = low_shelf_1st(f, g, fs);
case PEQ_LS2, [b0, a0] = low_shelf_2nd(f, g, fs);
case PEQ_HS1, [b0, a0] = high_shelf_1st(f, g, fs);
case PEQ_HS2, [b0, a0] = high_shelf_2nd(f, g, fs);
case PEQ_PN2, [b0, a0] = peak_2nd(f, g, Q, fs);
case PEQ_HP2G, [b0, a0] = high_pass_2nd_reasonance(f, Q, fs);
case PEQ_LP2G, [b0, a0] = low_pass_2nd_reasonance(f, Q, fs);
case PEQ_BP2, [b0, a0] = band_pass_2nd(f, Q, fs);
case PEQ_NC2, [b0, a0] = notch_2nd(f, Q, fs);
case PEQ_LS2G, [b0, a0] = low_shelf_2nd_google(f, g, fs);
case PEQ_HS2G, [b0, a0] = high_shelf_2nd_google(f, g, fs);
otherwise
error('Unknown parametric EQ type');
end
if length(a0) > 0
[z0, p0, k0] = tf2zp(b0, a0);
end
if length(k0) > 0
z = [z ; z0(:)];
p = [p ; p0(:)];
k = k * k0;
end
end
end
end
function [b, a] = low_shelf_1st(fhz, gdb, fs)
zw = 2*pi*fhz;
w = wmap(zw, fs);
glin = 10^(gdb/20);
bs = [1 glin*w];
as = [1 w];
[b, a] = my_bilinear(bs, as, fs);
end
function [b, a] = low_shelf_2nd(fhz, gdb, fs)
zw = 2*pi*fhz;
w = wmap(zw, fs);
glin = 10^(gdb/20);
bs = [1 w*sqrt(2*glin) glin*w^2];
as = [1 w*sqrt(2) w^2];
[b, a] = my_bilinear(bs, as, fs);
end
function [b, a] = high_shelf_1st(fhz, gdb, fs)
zw = 2*pi*fhz;
w = wmap(zw, fs);
glin = 10^(gdb/20);
bs = [glin w];
as = [1 w];
[b, a] = my_bilinear(bs, as, fs);
end
function [b, a] = high_shelf_2nd(fhz, gdb, fs)
zw = 2*pi*fhz;
w = wmap(zw, fs);
glin = 10^(gdb/20);
bs = [glin w*sqrt(2*glin) w^2];
as = [1 w*sqrt(2) w^2];
[b, a] = my_bilinear(bs, as, fs);
end
function [b, a] = peak_2nd(fhz, gdb, Q, fs)
% Reference http://www.musicdsp.org/files/Audio-EQ-Cookbook.txt
A = 10^(gdb/40); % Square root of linear gain
wc = 2*pi*fhz/fs;
if Q <= 0
% To fix gui edge cases, comment from CRAS code:
% When Q = 0, the above formulas have problems. If we
% look at the z-transform, we can see that the limit
% as Q->0 is A^2, so set the filter that way.
b = [A * A, 0, 0]
a = [1, 0, 0];
return;
endif
alpha = sin(wc)/(2*Q);
b0 = 1 + alpha * A;
b1 = -2 * cos(wc);
b2 = 1 - alpha * A;
a0 = 1 + alpha / A;
a1 = -2 * cos(wc);
a2 = 1 - alpha / A;
b = [b0 / a0 b1 / a0 b2 / a0];
a = [1 a1 / a0 a2 / a0];
end
function [b, a] = high_pass_2nd_reasonance(f, resonance, fs)
cutoff = f/(fs/2);
% Limit cutoff to 0 to 1.
cutoff = max(0.0, min(cutoff, 1.0));
if cutoff == 1 || cutoff == 0
% When cutoff is one, the z-transform is 0.
% When cutoff is zero, we need to be careful because the above
% gives a quadratic divided by the same quadratic, with poles
% and zeros on the unit circle in the same place. When cutoff
% is zero, the z-transform is 1.
b = [1 - cutoff, 0, 0];
a = [1, 0, 0];
return;
endif
% Compute biquad coefficients for highpass filter
resonance = max(0.0, resonance); % can't go negative
g = 10.0^(0.05 * resonance);
d = sqrt((4 - sqrt(16 - 16 / (g * g))) / 2);
theta = pi * cutoff;
sn = 0.5 * d * sin(theta);
beta = 0.5 * (1 - sn) / (1 + sn);
gamma = (0.5 + beta) * cos(theta);
alpha = 0.25 * (0.5 + beta + gamma);
b0 = 2 * alpha;
b1 = 2 * -2 * alpha;
b2 = 2 * alpha;
a1 = 2 * -gamma;
a2 = 2 * beta;
b = [b0, b1, b2];
a = [1.0, a1, a2];
end
function [b, a] = low_pass_2nd_reasonance(f, resonance, fs)
cutoff = f/(fs/2);
% Limit cutoff to 0 to 1.
cutoff = max(0.0, min(cutoff, 1.0));
if cutoff == 1 || cutoff == 0
% When cutoff is 1, the z-transform is 1.
% When cutoff is zero, nothing gets through the filter, so set
% coefficients up correctly.
b = [cutoff, 0, 0];
a = [1, 0, 0];
return;
endif
% Compute biquad coefficients for lowpass filter
resonance = max(0.0, resonance); % can't go negative
g = 10.0^(0.05 * resonance);
d = sqrt((4 - sqrt(16 - 16 / (g * g))) / 2);
theta = pi * cutoff;
sn = 0.5 * d * sin(theta);
beta = 0.5 * (1 - sn) / (1 + sn);
gamma = (0.5 + beta) * cos(theta);
alpha = 0.25 * (0.5 + beta - gamma);
b0 = 2 * alpha;
b1 = 2 * 2 * alpha;
b2 = 2 * alpha;
a1 = 2 * -gamma;
a2 = 2 * beta;
b = [b0, b1, b2];
a = [1.0, a1, a2];
end
function [b, a] = band_pass_2nd(f, Q, fs)
frequency = f/(fs/2);
% No negative frequencies allowed.
frequency = max(0.0, frequency);
% Don't let Q go negative, which causes an unstable filter.
Q = max(0.0, Q);
if frequency <= 0 || frequency >= 1
% When the cutoff is zero, the z-transform approaches 0, if Q
% > 0. When both Q and cutoff are zero, the z-transform is
% pretty much undefined. What should we do in this case?
% For now, just make the filter 0. When the cutoff is 1, the
% z-transform also approaches 0.
b = [0, 0, 0];
a = [1, 0, 0];
return;
endif
if (Q <= 0)
% When Q = 0, the above formulas have problems. If we
% look at the z-transform, we can see that the limit
% as Q->0 is 1, so set the filter that way.
b = [1, 0, 0];
a = [1, 0, 0];
return;
endif
w0 = pi * frequency;
alpha = sin(w0) / (2 * Q);
k = cos(w0);
b0 = alpha;
b1 = 0;
b2 = -alpha;
a0 = 1 + alpha;
a1 = -2 * k;
a2 = 1 - alpha;
b = [b0 / a0 b1 / a0 b2 / a0];
a = [1 a1 / a0 a2 / a0];
end
function [b, a] = notch_2nd(f, Q, fs)
frequency = f/(fs/2);
% Clip frequencies to between 0 and 1, inclusive.
frequency = max(0.0, min(frequency, 1.0));
% Don't let Q go negative, which causes an unstable filter.
Q = max(0.0, Q);
if frequency <= 0 || frequency >= 1
% When frequency is 0 or 1, the z-transform is 1.
b = [1, 0, 0];
a = [1, 0, 0];
return;
endif
if Q <= 0
% When Q = 0, the above formulas have problems. If we
% look at the z-transform, we can see that the limit
% as Q->0 is 0, so set the filter that way.
b = [0, 0, 0];
a = [1, 0, 0];
return;
endif
w0 = pi * frequency;
alpha = sin(w0) / (2 * Q);
k = cos(w0);
b0 = 1;
b1 = -2 * k;
b2 = 1;
a0 = 1 + alpha;
a1 = -2 * k;
a2 = 1 - alpha;
b = [b0 / a0 b1 / a0 b2 / a0];
a = [1 a1 / a0 a2 / a0];
end
function [b, a] = low_shelf_2nd_google(f, db_gain, fs)
frequency = f/(fs/2);
% Clip frequencies to between 0 and 1, inclusive.
frequency = max(0.0, min(frequency, 1.0));
A = 10.0^(db_gain / 40);
if (frequency == 1)
% The z-transform is a constant gain.
b = [A * A, 0, 0];
a = [1, 0, 0];
return;
endif
if (frequency <= 0)
% When frequency is 0, the z-transform is 1.
b = [1, 0, 0];
a = [1, 0, 0];
return;
endif
w0 = pi * frequency;
S = 1; % filter slope (1 is max value)
alpha = 0.5 * sin(w0) * ...
sqrt((A + 1 / A) * (1 / S - 1) + 2);
k = cos(w0);
k2 = 2 * sqrt(A) * alpha;
a_plus_one = A + 1;
a_minus_one = A - 1;
b0 = A * (a_plus_one - a_minus_one * k + k2);
b1 = 2 * A * (a_minus_one - a_plus_one * k);
b2 = A * (a_plus_one - a_minus_one * k - k2);
a0 = a_plus_one + a_minus_one * k + k2;
a1 = -2 * (a_minus_one + a_plus_one * k);
a2 = a_plus_one + a_minus_one * k - k2;
b = [b0 / a0 b1 / a0 b2 / a0];
a = [1 a1 / a0 a2 / a0];
end
function [b, a] = high_shelf_2nd_google(f, db_gain, fs)
frequency = f/(fs/2);
% Clip frequencies to between 0 and 1, inclusive.
frequency = max(0.0, min(frequency, 1.0));
A = 10.0^(db_gain / 40);
if (frequency == 1)
% The z-transform is 1.
b = [1, 0, 0];
a = [1, 0, 0];
return;
endif
if (frequency <= 0)
% When frequency = 0, the filter is just a gain, A^2.
b = [A * A, 0, 0];
a = [1, 0, 0];
return;
endif
w0 = pi * frequency;
S = 1; % filter slope (1 is max value)
alpha = 0.5 * sin(w0) * ...
sqrt((A + 1 / A) * (1 / S - 1) + 2);
k = cos(w0);
k2 = 2 * sqrt(A) * alpha;
a_plus_one = A + 1;
a_minus_one = A - 1;
b0 = A * (a_plus_one + a_minus_one * k + k2);
b1 = -2 * A * (a_minus_one + a_plus_one * k);
b2 = A * (a_plus_one + a_minus_one * k - k2);
a0 = a_plus_one - a_minus_one * k + k2;
a1 = 2 * (a_minus_one - a_plus_one * k);
a2 = a_plus_one - a_minus_one * k - k2;
b = [b0 / a0 b1 / a0 b2 / a0];
a = [1 a1 / a0 a2 / a0];
end
function [b, a] = my_bilinear(sb, sa, fs)
if exist('OCTAVE_VERSION', 'builtin')
[b, a] = bilinear(sb, sa, 1/fs);
else
[b, a] = bilinear(sb, sa, fs);
end
end
function sw = wmap(w, fs)
t = 1/fs;
sw = 2/t*tan(w*t/2);
end