sof/tools/tune/eq/mls_freq_resp.m

403 lines
11 KiB
Mathematica
Raw Normal View History

function [f, m_db] = mls_freq_resp(id)
%% Measure frequency response with MLS test signal
%
% [f, m] = mls_freq_resp(id)
%
% Input parameters
% id - A string identifier for test case. An id 'selftest' is for special
% usage. It calculates response of filtered MLS signal and computes
% the measurement vs. known. Deviation is reported as error. It can
% be useful if the internal MLS measurement parameters are adjusted.
%
% Output parameters
% f - Frequency vector in Hz
% m - Measured magnitude responses in dB
%
% Configuration (edit these):
% mls_play_config.txt
% mls_rec_config.txt
%
% The script will return also a text CSV format file with name mls-<id>.txt.
%
% SPDX-License-Identifier: BSD-3-Clause
%
% Copyright (c) 2018-2020, Intel Corporation. All rights reserved.
%
% Author: Seppo Ingalsuo <seppo.ingalsuo@linux.intel.com>
%% Settings
np = 1024; % Number of frequency points to use
f_lo = 100; % Lower frequency limit for analysis
f_hi = 20e3; % Upper frequency limit for analysis
t_tot = 10e-3; % MLS analysis window length in s
t_mls_s = 1.0; % MLS test signal length in s
a_mls_db = -10; % MLS test signal amplitude in dB
fs = 48e3; % Sample rate in Hz
bits = 16; % Audio format to use (bits)
fmt = 'S16_LE'; % Audio format to use (ALSA)
dir = '/tmp'; % Directory for temporary files
capture_level_max_db = -1; % Expected max. level
capture_level_min_db = -30; % Expacted min. level
%% Get device identifier to use
if nargin < 1
id = 'unknown';
end
if strcmp(id, 'selftest')
selftest = 1;
% Just some simulated speaker response to use as self test case
stb = [ 0.341762453, -0.915611126, 0.482465118, ...
1.017612317, -1.722527013, 0.711608745, ...
0.630608859, -0.813609935, 0.267690582, ];
sta = [ 1.000000000, -3.931695128, 6.630812276, ...
-6.339248735, 3.800407709, -1.559376698, ...
0.619626250, -0.317702349, 0.097453451, ];
else
selftest = 0;
end
measfn = sprintf('mls-%s.wav', id);
csvfn = sprintf('mls-%s.txt', id);
%% Paths
addpath('../../test/audio/test_utils');
%% MLS
n_mls = round(fs*t_mls_s);
mls = 10^(a_mls_db/20) * (2 * mlsp12(1, n_mls) - 1);
mlsfn = 'mls-ref.wav';
audiowrite(mlsfn, mls, fs);
%% Chip markers and parameters for find sync
[x1, m1] = sync_chirp(fs, 'up');
[x2, m2] = sync_chirp(fs, 'down');
fnd.fs = fs; % Sample rate
fnd.sm = 5; % Max seek from start
fnd.em = 3; % Max seek from end
fnd.idle_t = 2; % max idle in start or end
fnd.mark_t = m1.t; % Marker length
fnd.nf = 1; % One signal (amplitude)
fnd.na = 1; % One signal (frequency)
fnd.tl = t_mls_s; % Length of signal
fnd.mt = 0.1; % Threshold length to issue error
fnd.is = 0; % Ignore from start
fnd.ie = 0; % Ignore from end
%% Merge markers and MLS
z = zeros(n_mls + m1.n + m2.n, 1);
i1 = m1.n + 1;
i2 = m1.n + n_mls;
z(1:i1 - 1) = x1;
z(i1:i2) = mls;
z(i2 + 1:end) = x2;
%% Get config
rec_cfg = meas_remote_rec_config(fs, fmt);
play_cfg = meas_remote_play_config;
%% Capture MLS from all playback channel at time
mixfn = 'mlsmix.wav';
recfn = 'recch.wav';
y = [];
for i=1:play_cfg.nch
fprintf('\n');
fprintf('Measure playback channel %d\n', i);
if selftest
tz =zeros(2*fs+length(z), 1); % Pad 2s
tz(fs:fs+length(z)-1) = z;
t = filter(stb, sta, tz); % Filter with test response
r = t(:) * ones(1, rec_cfg.nch); % Copy to all channels
else
x = zeros(length(z), play_cfg.nch);
x(:,i) = z;
mixdfn = sprintf('%s/%s', dir, mixfn);
audiowrite(mixdfn, x, fs, 'BitsPerSample', bits);
copy_playback(mixdfn, play_cfg);
tcap = floor(6 + t_mls_s); % Capture for MLS +6s
remote_capture(recfn, rec_cfg, tcap);
pause(1);
remote_play(mixfn, play_cfg);
pause(3);
r = get_recording(recfn, rec_cfg);
end
[d, nt] = find_test_signal(r(:,1), fnd);
if isempty(d)
figure;
sr = size(r);
ts = (0:sr(1)-1)/fs;
plot(ts, r(:,1));
grid on;
xlabel('Time (s)');
ylabel('Sample value');
title('Captured audio test waveform');
fprintf(1, 'Error: check the plot for skew in capture/playback.\n');
f = [];
m_db = [];
return
end
for j = 1:rec_cfg.nch
y(:, rec_cfg.nch*(i-1) + j) = r(d:d + nt -1, j);
end
m = 20*log10(max(abs(r)));
fprintf('Peak levels for capture channels (dB):');
for j = 1:rec_cfg.nch
fprintf(' %5.1f', m(j));
end
fprintf('\n');
if max(m) > capture_level_max_db
fprintf('Warning: The recording level is too loud.\n');
end
if min(m) < capture_level_min_db
fprintf('Warning: The recording level is too silent.\n');
end
end
audiowrite(measfn, y, fs, 'BitsPerSample', bits);
fprintf('\n');
fprintf('Done.\n');
[f, m_db, b] = mls_calc_resp(csvfn, mlsfn, measfn, t_tot, np, f_lo, f_hi);
[f, m_db] = apply_mic_calibration(f, m_db, rec_cfg);
figure
idx = find(f>1e3, 1, 'first') - 1;
m_db_align = m_db - m_db(idx);
semilogx(f, m_db_align);
ax=axis(); axis([f_lo f_hi ax(3:4)]);
grid on;
xlabel('Frequency (Hz)');
ylabel('Magnitude (dB)');
if selftest
title('Measured vs. reference response');
h = freqz(stb, sta, f, fs);
ref_db = 20*log10(abs(h));
ref_db_align = ref_db - ref_db(idx);
hold on;
plot(f, ref_db_align, 'r--');
hold off;
idx = find(f < f_hi);
idx = find(f(idx) > f_lo);
m_lin = 10.^(m_db_align(idx)/20);
ref_lin = 10.^(ref_db_align(idx)/20);
err_lin = m_lin - ref_lin;
e_rms = sqrt(mean(err_lin.^2));
e_db = 20*log10(e_rms);
figure;
semilogx(f(idx), 20*log10(abs(err_lin)))
grid on;
xlabel('Frequency (Hz)');
ylabel('Magnitude (dB)');
title('Observed Error in self test');
if e_db < -30
fprintf('Passed self test. ');
else
fprintf('Failed self test. ');
end
fprintf('Response RMS error is %4.1f dB.\n', e_db);
end
end
function copy_playback(fn, cfg)
if cfg.ssh
cmd = sprintf('scp %s %s:%s/', fn, cfg.user, cfg.dir);
fprintf('Remote copy: %s\n', cmd);
system(cmd);
else
%cmd = sprintf('cp %s %s/', fn, cfg.dir);
%fprintf('Local copy: %s\n', cmd);
end
end
function y = get_recording(fn, cfg)
if cfg.ssh
cmd = sprintf('scp %s:%s/%s %s', cfg.user, cfg.dir, fn, fn);
fprintf('Remote copy: %s\n', cmd);
else
cmd = sprintf('cp %s/%s %s', cfg.dir, fn, fn);
fprintf('Local copy: %s\n', cmd);
end
system(cmd);
y = audioread(fn);
delete(fn);
end
function remote_play(fn, cfg)
if cfg.ssh
cmd = sprintf('ssh %s aplay -D%s %s/%s', cfg.user, cfg.dev, cfg.dir, fn);
fprintf('Remote play: %s\n', cmd);
else
cmd = sprintf('aplay -D%s %s/%s', cfg.dev, cfg.dir, fn);
fprintf('Local play: %s\n', cmd);
end
system(cmd);
end
function remote_capture(fn, cfg, t)
if cfg.ssh
cmd = sprintf('ssh %s arecord -q -D%s %s -d %d %s/%s &', ...
cfg.user, cfg.dev, cfg.fmt, t, cfg.dir, fn);
fprintf('Remote capture: %s\n', cmd);
else
cmd = sprintf('arecord -q -D%s %s -d %d %s/%s &', ...
cfg.dev, cfg.fmt, t, cfg.dir, fn);
fprintf('Local capture: %s\n', cmd);
end
system(cmd);
end
function play = meas_remote_play_config()
source mls_play_config.txt;
fprintf('\nThe setttings for remote playback are\n');
fprintf('Use ssh : %d\n', play.ssh);
fprintf('User : %s\n', play.user);
fprintf('Directory : %s\n', play.dir);
fprintf('Device : %s\n', play.dev);
fprintf('Channels : %d\n', play.nch);
end
function rec = meas_remote_rec_config(fs, fmt)
source mls_rec_config.txt;
rec.fmt = sprintf('-t wav -c %d -f %s -r %d', ...
rec.nch, fmt, fs);
fprintf('\nThe setttings for remote capture are\n');
fprintf('Use ssh : %d\n', rec.ssh);
fprintf('User : %s\n', rec.user);
fprintf('Directory : %s\n', rec.dir);
fprintf('Device : %s\n', rec.dev);
fprintf('format : %s\n', rec.fmt);
fprintf('Channels : %d\n', rec.nch);
fprintf('Calibration Data : %s\n', rec.cal);
if length(rec.cal) > 0
if exist(rec.cal, 'file')
[rec.cf, rec.cm, rec.sens, rec.cs] = get_calibration(rec.cal);
else
error('The calibration file does not exist');
end
else
rec.cf = [];
rec.cm = [];
rec.sens = [];
rec.cs = '';
end
end
% The syntax of ASCII text calibration data is such that first line is
% text string sometimes within "" or text line about Sensitivity. Such
% lines are read and stored to description text. The sensitivty is extracted
% and printed if success but currently it is not utilized by the code.
%
% The next lines are <frequency Hz> <magnitude decibels> for
% measurement data for microphone. If there are more than two numbers
% per line the other than two first columns are ignored. This code
% applies inverse of calibration data for measured response calibration.
function [f, m, sens, desc] = get_calibration(fn)
fh = fopen(fn, 'r');
if fh < 0
error('Cannot open calibration data file');
end
n = 1;
f = [];
m = [];
sens =[];
desc = '';
str = fgets(fh);
idx = findstr(str, '"');
while length(idx) > 0
line = str(idx(1)+1:idx(2)-1);
desc = sprintf('%s%s ', desc, line);
str = fgets(fh);
idx = findstr(str, '"');
end
if length(strfind(str, 'Sens'))
desc = str;
str = fgets(fh);
end
while str ~= -1
d=sscanf(str,'%f');
f(n) = d(1);
m(n) = d(2);
n = n + 1;
str = fgets(fh);
end
% Strip possible linefeed from description end
if double(desc(end)) == 10
desc = desc(1:end-1);
end
fprintf('Calibration Info : %s\n', desc);
i1 = strfind(desc, 'Sens Factor =');
i2 = strfind(desc, 'dB');
if length(i1) == 1 && length(i2) == 1
sens = sscanf(desc(i1+13:i2-1), '%f');
fprintf('Calibration Sens : %6.2f dB\n', sens);
end
fprintf('Calibration range: %.2f .. %.2f Hz\n', min(f), max(f));
fprintf('Calibration range: %.2f .. %.2f dB\n', min(m), max(m));
figure;
semilogx(f, m);
grid on;
title(desc);
xlabel('Frequency (Hz)');
ylabel('Magnitude (dB)');
end
function [x, seed] = mlsp12(seed, n)
% Based on book Numerical Recipes in C, chapter 7.4 Generation of
% random bits method II p. 298-299 example and 12 bit primitive
% polynomial (12, 6, 4, 1, 0)
x = zeros(1,n);
ib1 = 2^(1-1);
ib4 = 2^(4-1);
ib6 = 2^(6-1);
ib12 = 2^(12-1);
mask = ib1 + ib4 + ib6 + ib12;
for i = 1:n
if bitand(seed, ib12)
seed = bitor(bitxor(seed, mask) * 2 , ib1);
x(i) = 1;
else
seed = seed * 2;
x(i) = 0;
end
end
end
%% Calibration apply function
% Resample microphone calibration data into used grid and
% then subtract calibration response from measured
% response.
function [cal_f, cal_m_db] = apply_mic_calibration(f, m_db, rec)
if length(rec.cm) > 0
if ~isvector(rec.cm)
error('Calibration can be for one channel only');
end
mic_m_db = interp1(rec.cf, rec.cm, f, 'linear');
nans = isnan(mic_m_db);
idx = find(nans == 0);
cal_f = f(idx);
cal_db = mic_m_db(idx);
s = size(m_db);
for i = 1:s(2)
cal_m_db(:,i) = m_db(idx,i) - cal_db(:);
end
else
cal_m_db = m_db;
cal_f = f;
end
end