acrn-kernel/drivers/parisc/iosapic.c

992 lines
28 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
** I/O Sapic Driver - PCI interrupt line support
**
** (c) Copyright 1999 Grant Grundler
** (c) Copyright 1999 Hewlett-Packard Company
**
**
** The I/O sapic driver manages the Interrupt Redirection Table which is
** the control logic to convert PCI line based interrupts into a Message
** Signaled Interrupt (aka Transaction Based Interrupt, TBI).
**
** Acronyms
** --------
** HPA Hard Physical Address (aka MMIO address)
** IRQ Interrupt ReQuest. Implies Line based interrupt.
** IRT Interrupt Routing Table (provided by PAT firmware)
** IRdT Interrupt Redirection Table. IRQ line to TXN ADDR/DATA
** table which is implemented in I/O SAPIC.
** ISR Interrupt Service Routine. aka Interrupt handler.
** MSI Message Signaled Interrupt. PCI 2.2 functionality.
** aka Transaction Based Interrupt (or TBI).
** PA Precision Architecture. HP's RISC architecture.
** RISC Reduced Instruction Set Computer.
**
**
** What's a Message Signalled Interrupt?
** -------------------------------------
** MSI is a write transaction which targets a processor and is similar
** to a processor write to memory or MMIO. MSIs can be generated by I/O
** devices as well as processors and require *architecture* to work.
**
** PA only supports MSI. So I/O subsystems must either natively generate
** MSIs (e.g. GSC or HP-PB) or convert line based interrupts into MSIs
** (e.g. PCI and EISA). IA64 supports MSIs via a "local SAPIC" which
** acts on behalf of a processor.
**
** MSI allows any I/O device to interrupt any processor. This makes
** load balancing of the interrupt processing possible on an SMP platform.
** Interrupts are also ordered WRT to DMA data. It's possible on I/O
** coherent systems to completely eliminate PIO reads from the interrupt
** path. The device and driver must be designed and implemented to
** guarantee all DMA has been issued (issues about atomicity here)
** before the MSI is issued. I/O status can then safely be read from
** DMA'd data by the ISR.
**
**
** PA Firmware
** -----------
** PA-RISC platforms have two fundamentally different types of firmware.
** For PCI devices, "Legacy" PDC initializes the "INTERRUPT_LINE" register
** and BARs similar to a traditional PC BIOS.
** The newer "PAT" firmware supports PDC calls which return tables.
** PAT firmware only initializes the PCI Console and Boot interface.
** With these tables, the OS can program all other PCI devices.
**
** One such PAT PDC call returns the "Interrupt Routing Table" (IRT).
** The IRT maps each PCI slot's INTA-D "output" line to an I/O SAPIC
** input line. If the IRT is not available, this driver assumes
** INTERRUPT_LINE register has been programmed by firmware. The latter
** case also means online addition of PCI cards can NOT be supported
** even if HW support is present.
**
** All platforms with PAT firmware to date (Oct 1999) use one Interrupt
** Routing Table for the entire platform.
**
** Where's the iosapic?
** --------------------
** I/O sapic is part of the "Core Electronics Complex". And on HP platforms
** it's integrated as part of the PCI bus adapter, "lba". So no bus walk
** will discover I/O Sapic. I/O Sapic driver learns about each device
** when lba driver advertises the presence of the I/O sapic by calling
** iosapic_register().
**
**
** IRQ handling notes
** ------------------
** The IO-SAPIC can indicate to the CPU which interrupt was asserted.
** So, unlike the GSC-ASIC and Dino, we allocate one CPU interrupt per
** IO-SAPIC interrupt and call the device driver's handler directly.
** The IO-SAPIC driver hijacks the CPU interrupt handler so it can
** issue the End Of Interrupt command to the IO-SAPIC.
**
** Overview of exported iosapic functions
** --------------------------------------
** (caveat: code isn't finished yet - this is just the plan)
**
** iosapic_init:
** o initialize globals (lock, etc)
** o try to read IRT. Presence of IRT determines if this is
** a PAT platform or not.
**
** iosapic_register():
** o create iosapic_info instance data structure
** o allocate vector_info array for this iosapic
** o initialize vector_info - read corresponding IRdT?
**
** iosapic_xlate_pin: (only called by fixup_irq for PAT platform)
** o intr_pin = read cfg (INTERRUPT_PIN);
** o if (device under PCI-PCI bridge)
** translate slot/pin
**
** iosapic_fixup_irq:
** o if PAT platform (IRT present)
** intr_pin = iosapic_xlate_pin(isi,pcidev):
** intr_line = find IRT entry(isi, PCI_SLOT(pcidev), intr_pin)
** save IRT entry into vector_info later
** write cfg INTERRUPT_LINE (with intr_line)?
** else
** intr_line = pcidev->irq
** IRT pointer = NULL
** endif
** o locate vector_info (needs: isi, intr_line)
** o allocate processor "irq" and get txn_addr/data
** o request_irq(processor_irq, iosapic_interrupt, vector_info,...)
**
** iosapic_enable_irq:
** o clear any pending IRQ on that line
** o enable IRdT - call enable_irq(vector[line]->processor_irq)
** o write EOI in case line is already asserted.
**
** iosapic_disable_irq:
** o disable IRdT - call disable_irq(vector[line]->processor_irq)
*/
#include <linux/pci.h>
#include <asm/pdc.h>
#include <asm/pdcpat.h>
#ifdef CONFIG_SUPERIO
#include <asm/superio.h>
#endif
#include <asm/ropes.h>
#include "iosapic_private.h"
#define MODULE_NAME "iosapic"
/* "local" compile flags */
#undef PCI_BRIDGE_FUNCS
#undef DEBUG_IOSAPIC
#undef DEBUG_IOSAPIC_IRT
#ifdef DEBUG_IOSAPIC
#define DBG(x...) printk(x)
#else /* DEBUG_IOSAPIC */
#define DBG(x...)
#endif /* DEBUG_IOSAPIC */
#ifdef DEBUG_IOSAPIC_IRT
#define DBG_IRT(x...) printk(x)
#else
#define DBG_IRT(x...)
#endif
#ifdef CONFIG_64BIT
#define COMPARE_IRTE_ADDR(irte, hpa) ((irte)->dest_iosapic_addr == (hpa))
#else
#define COMPARE_IRTE_ADDR(irte, hpa) \
((irte)->dest_iosapic_addr == ((hpa) | 0xffffffff00000000ULL))
#endif
#define IOSAPIC_REG_SELECT 0x00
#define IOSAPIC_REG_WINDOW 0x10
#define IOSAPIC_REG_EOI 0x40
#define IOSAPIC_REG_VERSION 0x1
#define IOSAPIC_IRDT_ENTRY(idx) (0x10+(idx)*2)
#define IOSAPIC_IRDT_ENTRY_HI(idx) (0x11+(idx)*2)
static inline unsigned int iosapic_read(void __iomem *iosapic, unsigned int reg)
{
writel(reg, iosapic + IOSAPIC_REG_SELECT);
return readl(iosapic + IOSAPIC_REG_WINDOW);
}
static inline void iosapic_write(void __iomem *iosapic, unsigned int reg, u32 val)
{
writel(reg, iosapic + IOSAPIC_REG_SELECT);
writel(val, iosapic + IOSAPIC_REG_WINDOW);
}
#define IOSAPIC_VERSION_MASK 0x000000ff
#define IOSAPIC_VERSION(ver) ((int) (ver & IOSAPIC_VERSION_MASK))
#define IOSAPIC_MAX_ENTRY_MASK 0x00ff0000
#define IOSAPIC_MAX_ENTRY_SHIFT 0x10
#define IOSAPIC_IRDT_MAX_ENTRY(ver) \
(int) (((ver) & IOSAPIC_MAX_ENTRY_MASK) >> IOSAPIC_MAX_ENTRY_SHIFT)
/* bits in the "low" I/O Sapic IRdT entry */
#define IOSAPIC_IRDT_ENABLE 0x10000
#define IOSAPIC_IRDT_PO_LOW 0x02000
#define IOSAPIC_IRDT_LEVEL_TRIG 0x08000
#define IOSAPIC_IRDT_MODE_LPRI 0x00100
/* bits in the "high" I/O Sapic IRdT entry */
#define IOSAPIC_IRDT_ID_EID_SHIFT 0x10
static DEFINE_SPINLOCK(iosapic_lock);
static inline void iosapic_eoi(void __iomem *addr, unsigned int data)
{
__raw_writel(data, addr);
}
/*
** REVISIT: future platforms may have more than one IRT.
** If so, the following three fields form a structure which
** then be linked into a list. Names are chosen to make searching
** for them easy - not necessarily accurate (eg "cell").
**
** Alternative: iosapic_info could point to the IRT it's in.
** iosapic_register() could search a list of IRT's.
*/
static struct irt_entry *irt_cell;
static size_t irt_num_entry;
static struct irt_entry *iosapic_alloc_irt(int num_entries)
{
unsigned long a;
/* The IRT needs to be 8-byte aligned for the PDC call.
* Normally kmalloc would guarantee larger alignment, but
* if CONFIG_DEBUG_SLAB is enabled, then we can get only
* 4-byte alignment on 32-bit kernels
*/
a = (unsigned long)kmalloc(sizeof(struct irt_entry) * num_entries + 8, GFP_KERNEL);
a = (a + 7UL) & ~7UL;
return (struct irt_entry *)a;
}
/**
* iosapic_load_irt - Fill in the interrupt routing table
* @cell_num: The cell number of the CPU we're currently executing on
* @irt: The address to place the new IRT at
* @return The number of entries found
*
* The "Get PCI INT Routing Table Size" option returns the number of
* entries in the PCI interrupt routing table for the cell specified
* in the cell_number argument. The cell number must be for a cell
* within the caller's protection domain.
*
* The "Get PCI INT Routing Table" option returns, for the cell
* specified in the cell_number argument, the PCI interrupt routing
* table in the caller allocated memory pointed to by mem_addr.
* We assume the IRT only contains entries for I/O SAPIC and
* calculate the size based on the size of I/O sapic entries.
*
* The PCI interrupt routing table entry format is derived from the
* IA64 SAL Specification 2.4. The PCI interrupt routing table defines
* the routing of PCI interrupt signals between the PCI device output
* "pins" and the IO SAPICs' input "lines" (including core I/O PCI
* devices). This table does NOT include information for devices/slots
* behind PCI to PCI bridges. See PCI to PCI Bridge Architecture Spec.
* for the architected method of routing of IRQ's behind PPB's.
*/
static int __init
iosapic_load_irt(unsigned long cell_num, struct irt_entry **irt)
{
long status; /* PDC return value status */
struct irt_entry *table; /* start of interrupt routing tbl */
unsigned long num_entries = 0UL;
BUG_ON(!irt);
if (is_pdc_pat()) {
/* Use pat pdc routine to get interrupt routing table size */
DBG("calling get_irt_size (cell %ld)\n", cell_num);
status = pdc_pat_get_irt_size(&num_entries, cell_num);
DBG("get_irt_size: %ld\n", status);
BUG_ON(status != PDC_OK);
BUG_ON(num_entries == 0);
/*
** allocate memory for interrupt routing table
** This interface isn't really right. We are assuming
** the contents of the table are exclusively
** for I/O sapic devices.
*/
table = iosapic_alloc_irt(num_entries);
if (table == NULL) {
printk(KERN_WARNING MODULE_NAME ": read_irt : can "
"not alloc mem for IRT\n");
return 0;
}
/* get PCI INT routing table */
status = pdc_pat_get_irt(table, cell_num);
DBG("pdc_pat_get_irt: %ld\n", status);
WARN_ON(status != PDC_OK);
} else {
/*
** C3000/J5000 (and similar) platforms with Sprockets PDC
** will return exactly one IRT for all iosapics.
** So if we have one, don't need to get it again.
*/
if (irt_cell)
return 0;
/* Should be using the Elroy's HPA, but it's ignored anyway */
status = pdc_pci_irt_size(&num_entries, 0);
DBG("pdc_pci_irt_size: %ld\n", status);
if (status != PDC_OK) {
/* Not a "legacy" system with I/O SAPIC either */
return 0;
}
BUG_ON(num_entries == 0);
table = iosapic_alloc_irt(num_entries);
if (!table) {
printk(KERN_WARNING MODULE_NAME ": read_irt : can "
"not alloc mem for IRT\n");
return 0;
}
/* HPA ignored by this call too. */
status = pdc_pci_irt(num_entries, 0, table);
BUG_ON(status != PDC_OK);
}
/* return interrupt table address */
*irt = table;
#ifdef DEBUG_IOSAPIC_IRT
{
struct irt_entry *p = table;
int i;
printk(MODULE_NAME " Interrupt Routing Table (cell %ld)\n", cell_num);
printk(MODULE_NAME " start = 0x%p num_entries %ld entry_size %d\n",
table,
num_entries,
(int) sizeof(struct irt_entry));
for (i = 0 ; i < num_entries ; i++, p++) {
printk(MODULE_NAME " %02x %02x %02x %02x %02x %02x %02x %02x %08x%08x\n",
p->entry_type, p->entry_length, p->interrupt_type,
p->polarity_trigger, p->src_bus_irq_devno, p->src_bus_id,
p->src_seg_id, p->dest_iosapic_intin,
((u32 *) p)[2],
((u32 *) p)[3]
);
}
}
#endif /* DEBUG_IOSAPIC_IRT */
return num_entries;
}
void __init iosapic_init(void)
{
unsigned long cell = 0;
DBG("iosapic_init()\n");
#ifdef __LP64__
if (is_pdc_pat()) {
int status;
struct pdc_pat_cell_num cell_info;
status = pdc_pat_cell_get_number(&cell_info);
if (status == PDC_OK) {
cell = cell_info.cell_num;
}
}
#endif
/* get interrupt routing table for this cell */
irt_num_entry = iosapic_load_irt(cell, &irt_cell);
if (irt_num_entry == 0)
irt_cell = NULL; /* old PDC w/o iosapic */
}
/*
** Return the IRT entry in case we need to look something else up.
*/
static struct irt_entry *
irt_find_irqline(struct iosapic_info *isi, u8 slot, u8 intr_pin)
{
struct irt_entry *i = irt_cell;
int cnt; /* track how many entries we've looked at */
u8 irq_devno = (slot << IRT_DEV_SHIFT) | (intr_pin-1);
DBG_IRT("irt_find_irqline() SLOT %d pin %d\n", slot, intr_pin);
for (cnt=0; cnt < irt_num_entry; cnt++, i++) {
/*
** Validate: entry_type, entry_length, interrupt_type
**
** Difference between validate vs compare is the former
** should print debug info and is not expected to "fail"
** on current platforms.
*/
if (i->entry_type != IRT_IOSAPIC_TYPE) {
DBG_IRT(KERN_WARNING MODULE_NAME ":find_irqline(0x%p): skipping entry %d type %d\n", i, cnt, i->entry_type);
continue;
}
if (i->entry_length != IRT_IOSAPIC_LENGTH) {
DBG_IRT(KERN_WARNING MODULE_NAME ":find_irqline(0x%p): skipping entry %d length %d\n", i, cnt, i->entry_length);
continue;
}
if (i->interrupt_type != IRT_VECTORED_INTR) {
DBG_IRT(KERN_WARNING MODULE_NAME ":find_irqline(0x%p): skipping entry %d interrupt_type %d\n", i, cnt, i->interrupt_type);
continue;
}
if (!COMPARE_IRTE_ADDR(i, isi->isi_hpa))
continue;
if ((i->src_bus_irq_devno & IRT_IRQ_DEVNO_MASK) != irq_devno)
continue;
/*
** Ignore: src_bus_id and rc_seg_id correlate with
** iosapic_info->isi_hpa on HP platforms.
** If needed, pass in "PFA" (aka config space addr)
** instead of slot.
*/
/* Found it! */
return i;
}
printk(KERN_WARNING MODULE_NAME ": 0x%lx : no IRT entry for slot %d, pin %d\n",
isi->isi_hpa, slot, intr_pin);
return NULL;
}
/*
** xlate_pin() supports the skewing of IRQ lines done by subsidiary bridges.
** Legacy PDC already does this translation for us and stores it in INTR_LINE.
**
** PAT PDC needs to basically do what legacy PDC does:
** o read PIN
** o adjust PIN in case device is "behind" a PPB
** (eg 4-port 100BT and SCSI/LAN "Combo Card")
** o convert slot/pin to I/O SAPIC input line.
**
** HP platforms only support:
** o one level of skewing for any number of PPBs
** o only support PCI-PCI Bridges.
*/
static struct irt_entry *
iosapic_xlate_pin(struct iosapic_info *isi, struct pci_dev *pcidev)
{
u8 intr_pin, intr_slot;
pci_read_config_byte(pcidev, PCI_INTERRUPT_PIN, &intr_pin);
DBG_IRT("iosapic_xlate_pin(%s) SLOT %d pin %d\n",
pcidev->slot_name, PCI_SLOT(pcidev->devfn), intr_pin);
if (intr_pin == 0) {
/* The device does NOT support/use IRQ lines. */
return NULL;
}
/* Check if pcidev behind a PPB */
if (pcidev->bus->parent) {
/* Convert pcidev INTR_PIN into something we
** can lookup in the IRT.
*/
#ifdef PCI_BRIDGE_FUNCS
/*
** Proposal #1:
**
** call implementation specific translation function
** This is architecturally "cleaner". HP-UX doesn't
** support other secondary bus types (eg. E/ISA) directly.
** May be needed for other processor (eg IA64) architectures
** or by some ambitous soul who wants to watch TV.
*/
if (pci_bridge_funcs->xlate_intr_line) {
intr_pin = pci_bridge_funcs->xlate_intr_line(pcidev);
}
#else /* PCI_BRIDGE_FUNCS */
struct pci_bus *p = pcidev->bus;
/*
** Proposal #2:
** The "pin" is skewed ((pin + dev - 1) % 4).
**
** This isn't very clean since I/O SAPIC must assume:
** - all platforms only have PCI busses.
** - only PCI-PCI bridge (eg not PCI-EISA, PCI-PCMCIA)
** - IRQ routing is only skewed once regardless of
** the number of PPB's between iosapic and device.
** (Bit3 expansion chassis follows this rule)
**
** Advantage is it's really easy to implement.
*/
intr_pin = pci_swizzle_interrupt_pin(pcidev, intr_pin);
#endif /* PCI_BRIDGE_FUNCS */
/*
* Locate the host slot of the PPB.
*/
while (p->parent->parent)
p = p->parent;
intr_slot = PCI_SLOT(p->self->devfn);
} else {
intr_slot = PCI_SLOT(pcidev->devfn);
}
DBG_IRT("iosapic_xlate_pin: bus %d slot %d pin %d\n",
pcidev->bus->busn_res.start, intr_slot, intr_pin);
return irt_find_irqline(isi, intr_slot, intr_pin);
}
static void iosapic_rd_irt_entry(struct vector_info *vi , u32 *dp0, u32 *dp1)
{
struct iosapic_info *isp = vi->iosapic;
u8 idx = vi->irqline;
*dp0 = iosapic_read(isp->addr, IOSAPIC_IRDT_ENTRY(idx));
*dp1 = iosapic_read(isp->addr, IOSAPIC_IRDT_ENTRY_HI(idx));
}
static void iosapic_wr_irt_entry(struct vector_info *vi, u32 dp0, u32 dp1)
{
struct iosapic_info *isp = vi->iosapic;
DBG_IRT("iosapic_wr_irt_entry(): irq %d hpa %lx 0x%x 0x%x\n",
vi->irqline, isp->isi_hpa, dp0, dp1);
iosapic_write(isp->addr, IOSAPIC_IRDT_ENTRY(vi->irqline), dp0);
/* Read the window register to flush the writes down to HW */
dp0 = readl(isp->addr+IOSAPIC_REG_WINDOW);
iosapic_write(isp->addr, IOSAPIC_IRDT_ENTRY_HI(vi->irqline), dp1);
/* Read the window register to flush the writes down to HW */
dp1 = readl(isp->addr+IOSAPIC_REG_WINDOW);
}
/*
** set_irt prepares the data (dp0, dp1) according to the vector_info
** and target cpu (id_eid). dp0/dp1 are then used to program I/O SAPIC
** IRdT for the given "vector" (aka IRQ line).
*/
static void
iosapic_set_irt_data( struct vector_info *vi, u32 *dp0, u32 *dp1)
{
u32 mode = 0;
struct irt_entry *p = vi->irte;
if ((p->polarity_trigger & IRT_PO_MASK) == IRT_ACTIVE_LO)
mode |= IOSAPIC_IRDT_PO_LOW;
if (((p->polarity_trigger >> IRT_EL_SHIFT) & IRT_EL_MASK) == IRT_LEVEL_TRIG)
mode |= IOSAPIC_IRDT_LEVEL_TRIG;
/*
** IA64 REVISIT
** PA doesn't support EXTINT or LPRIO bits.
*/
*dp0 = mode | (u32) vi->txn_data;
/*
** Extracting id_eid isn't a real clean way of getting it.
** But the encoding is the same for both PA and IA64 platforms.
*/
if (is_pdc_pat()) {
/*
** PAT PDC just hands it to us "right".
** txn_addr comes from cpu_data[x].txn_addr.
*/
*dp1 = (u32) (vi->txn_addr);
} else {
/*
** eg if base_addr == 0xfffa0000),
** we want to get 0xa0ff0000.
**
** eid 0x0ff00000 -> 0x00ff0000
** id 0x000ff000 -> 0xff000000
*/
*dp1 = (((u32)vi->txn_addr & 0x0ff00000) >> 4) |
(((u32)vi->txn_addr & 0x000ff000) << 12);
}
DBG_IRT("iosapic_set_irt_data(): 0x%x 0x%x\n", *dp0, *dp1);
}
static void iosapic_mask_irq(struct irq_data *d)
{
unsigned long flags;
struct vector_info *vi = irq_data_get_irq_chip_data(d);
u32 d0, d1;
spin_lock_irqsave(&iosapic_lock, flags);
iosapic_rd_irt_entry(vi, &d0, &d1);
d0 |= IOSAPIC_IRDT_ENABLE;
iosapic_wr_irt_entry(vi, d0, d1);
spin_unlock_irqrestore(&iosapic_lock, flags);
}
static void iosapic_unmask_irq(struct irq_data *d)
{
struct vector_info *vi = irq_data_get_irq_chip_data(d);
u32 d0, d1;
/* data is initialized by fixup_irq */
WARN_ON(vi->txn_irq == 0);
iosapic_set_irt_data(vi, &d0, &d1);
iosapic_wr_irt_entry(vi, d0, d1);
#ifdef DEBUG_IOSAPIC_IRT
{
u32 *t = (u32 *) ((ulong) vi->eoi_addr & ~0xffUL);
printk("iosapic_enable_irq(): regs %p", vi->eoi_addr);
for ( ; t < vi->eoi_addr; t++)
printk(" %x", readl(t));
printk("\n");
}
printk("iosapic_enable_irq(): sel ");
{
struct iosapic_info *isp = vi->iosapic;
for (d0=0x10; d0<0x1e; d0++) {
d1 = iosapic_read(isp->addr, d0);
printk(" %x", d1);
}
}
printk("\n");
#endif
/*
* Issuing I/O SAPIC an EOI causes an interrupt IFF IRQ line is
* asserted. IRQ generally should not be asserted when a driver
* enables their IRQ. It can lead to "interesting" race conditions
* in the driver initialization sequence.
*/
DBG(KERN_DEBUG "enable_irq(%d): eoi(%p, 0x%x)\n", d->irq,
vi->eoi_addr, vi->eoi_data);
iosapic_eoi(vi->eoi_addr, vi->eoi_data);
}
static void iosapic_eoi_irq(struct irq_data *d)
{
struct vector_info *vi = irq_data_get_irq_chip_data(d);
iosapic_eoi(vi->eoi_addr, vi->eoi_data);
cpu_eoi_irq(d);
}
#ifdef CONFIG_SMP
static int iosapic_set_affinity_irq(struct irq_data *d,
const struct cpumask *dest, bool force)
{
struct vector_info *vi = irq_data_get_irq_chip_data(d);
u32 d0, d1, dummy_d0;
unsigned long flags;
int dest_cpu;
dest_cpu = cpu_check_affinity(d, dest);
if (dest_cpu < 0)
return -1;
irq_data_update_affinity(d, cpumask_of(dest_cpu));
vi->txn_addr = txn_affinity_addr(d->irq, dest_cpu);
spin_lock_irqsave(&iosapic_lock, flags);
/* d1 contains the destination CPU, so only want to set that
* entry */
iosapic_rd_irt_entry(vi, &d0, &d1);
iosapic_set_irt_data(vi, &dummy_d0, &d1);
iosapic_wr_irt_entry(vi, d0, d1);
spin_unlock_irqrestore(&iosapic_lock, flags);
return 0;
}
#endif
static struct irq_chip iosapic_interrupt_type = {
.name = "IO-SAPIC-level",
.irq_unmask = iosapic_unmask_irq,
.irq_mask = iosapic_mask_irq,
.irq_ack = cpu_ack_irq,
.irq_eoi = iosapic_eoi_irq,
#ifdef CONFIG_SMP
.irq_set_affinity = iosapic_set_affinity_irq,
#endif
};
int iosapic_fixup_irq(void *isi_obj, struct pci_dev *pcidev)
{
struct iosapic_info *isi = isi_obj;
struct irt_entry *irte = NULL; /* only used if PAT PDC */
struct vector_info *vi;
int isi_line; /* line used by device */
if (!isi) {
printk(KERN_WARNING MODULE_NAME ": hpa not registered for %s\n",
pci_name(pcidev));
return -1;
}
#ifdef CONFIG_SUPERIO
/*
* HACK ALERT! (non-compliant PCI device support)
*
* All SuckyIO interrupts are routed through the PIC's on function 1.
* But SuckyIO OHCI USB controller gets an IRT entry anyway because
* it advertises INT D for INT_PIN. Use that IRT entry to get the
* SuckyIO interrupt routing for PICs on function 1 (*BLEECCHH*).
*/
if (is_superio_device(pcidev)) {
/* We must call superio_fixup_irq() to register the pdev */
pcidev->irq = superio_fixup_irq(pcidev);
/* Don't return if need to program the IOSAPIC's IRT... */
if (PCI_FUNC(pcidev->devfn) != SUPERIO_USB_FN)
return pcidev->irq;
}
#endif /* CONFIG_SUPERIO */
/* lookup IRT entry for isi/slot/pin set */
irte = iosapic_xlate_pin(isi, pcidev);
if (!irte) {
printk("iosapic: no IRTE for %s (IRQ not connected?)\n",
pci_name(pcidev));
return -1;
}
DBG_IRT("iosapic_fixup_irq(): irte %p %x %x %x %x %x %x %x %x\n",
irte,
irte->entry_type,
irte->entry_length,
irte->polarity_trigger,
irte->src_bus_irq_devno,
irte->src_bus_id,
irte->src_seg_id,
irte->dest_iosapic_intin,
(u32) irte->dest_iosapic_addr);
isi_line = irte->dest_iosapic_intin;
/* get vector info for this input line */
vi = isi->isi_vector + isi_line;
DBG_IRT("iosapic_fixup_irq: line %d vi 0x%p\n", isi_line, vi);
/* If this IRQ line has already been setup, skip it */
if (vi->irte)
goto out;
vi->irte = irte;
/*
* Allocate processor IRQ
*
* XXX/FIXME The txn_alloc_irq() code and related code should be
* moved to enable_irq(). That way we only allocate processor IRQ
* bits for devices that actually have drivers claiming them.
* Right now we assign an IRQ to every PCI device present,
* regardless of whether it's used or not.
*/
vi->txn_irq = txn_alloc_irq(8);
if (vi->txn_irq < 0)
panic("I/O sapic: couldn't get TXN IRQ\n");
/* enable_irq() will use txn_* to program IRdT */
vi->txn_addr = txn_alloc_addr(vi->txn_irq);
vi->txn_data = txn_alloc_data(vi->txn_irq);
vi->eoi_addr = isi->addr + IOSAPIC_REG_EOI;
vi->eoi_data = cpu_to_le32(vi->txn_data);
cpu_claim_irq(vi->txn_irq, &iosapic_interrupt_type, vi);
out:
pcidev->irq = vi->txn_irq;
DBG_IRT("iosapic_fixup_irq() %d:%d %x %x line %d irq %d\n",
PCI_SLOT(pcidev->devfn), PCI_FUNC(pcidev->devfn),
pcidev->vendor, pcidev->device, isi_line, pcidev->irq);
return pcidev->irq;
}
static struct iosapic_info *iosapic_list;
#ifdef CONFIG_64BIT
int iosapic_serial_irq(struct parisc_device *dev)
{
struct iosapic_info *isi;
struct irt_entry *irte;
struct vector_info *vi;
int cnt;
int intin;
intin = (dev->mod_info >> 24) & 15;
/* lookup IRT entry for isi/slot/pin set */
for (cnt = 0; cnt < irt_num_entry; cnt++) {
irte = &irt_cell[cnt];
if (COMPARE_IRTE_ADDR(irte, dev->mod0) &&
irte->dest_iosapic_intin == intin)
break;
}
if (cnt >= irt_num_entry)
return 0; /* no irq found, force polling */
DBG_IRT("iosapic_serial_irq(): irte %p %x %x %x %x %x %x %x %x\n",
irte,
irte->entry_type,
irte->entry_length,
irte->polarity_trigger,
irte->src_bus_irq_devno,
irte->src_bus_id,
irte->src_seg_id,
irte->dest_iosapic_intin,
(u32) irte->dest_iosapic_addr);
/* search for iosapic */
for (isi = iosapic_list; isi; isi = isi->isi_next)
if (isi->isi_hpa == dev->mod0)
break;
if (!isi)
return 0; /* no iosapic found, force polling */
/* get vector info for this input line */
vi = isi->isi_vector + intin;
DBG_IRT("iosapic_serial_irq: line %d vi 0x%p\n", iosapic_intin, vi);
/* If this IRQ line has already been setup, skip it */
if (vi->irte)
goto out;
vi->irte = irte;
/*
* Allocate processor IRQ
*
* XXX/FIXME The txn_alloc_irq() code and related code should be
* moved to enable_irq(). That way we only allocate processor IRQ
* bits for devices that actually have drivers claiming them.
* Right now we assign an IRQ to every PCI device present,
* regardless of whether it's used or not.
*/
vi->txn_irq = txn_alloc_irq(8);
if (vi->txn_irq < 0)
panic("I/O sapic: couldn't get TXN IRQ\n");
/* enable_irq() will use txn_* to program IRdT */
vi->txn_addr = txn_alloc_addr(vi->txn_irq);
vi->txn_data = txn_alloc_data(vi->txn_irq);
vi->eoi_addr = isi->addr + IOSAPIC_REG_EOI;
vi->eoi_data = cpu_to_le32(vi->txn_data);
cpu_claim_irq(vi->txn_irq, &iosapic_interrupt_type, vi);
out:
return vi->txn_irq;
}
#endif
/*
** squirrel away the I/O Sapic Version
*/
static unsigned int
iosapic_rd_version(struct iosapic_info *isi)
{
return iosapic_read(isi->addr, IOSAPIC_REG_VERSION);
}
/*
** iosapic_register() is called by "drivers" with an integrated I/O SAPIC.
** Caller must be certain they have an I/O SAPIC and know its MMIO address.
**
** o allocate iosapic_info and add it to the list
** o read iosapic version and squirrel that away
** o read size of IRdT.
** o allocate and initialize isi_vector[]
** o allocate irq region
*/
void *iosapic_register(unsigned long hpa)
{
struct iosapic_info *isi = NULL;
struct irt_entry *irte = irt_cell;
struct vector_info *vip;
int cnt; /* track how many entries we've looked at */
/*
* Astro based platforms can only support PCI OLARD if they implement
* PAT PDC. Legacy PDC omits LBAs with no PCI devices from the IRT.
* Search the IRT and ignore iosapic's which aren't in the IRT.
*/
for (cnt=0; cnt < irt_num_entry; cnt++, irte++) {
WARN_ON(IRT_IOSAPIC_TYPE != irte->entry_type);
if (COMPARE_IRTE_ADDR(irte, hpa))
break;
}
if (cnt >= irt_num_entry) {
DBG("iosapic_register() ignoring 0x%lx (NOT FOUND)\n", hpa);
return NULL;
}
isi = kzalloc(sizeof(struct iosapic_info), GFP_KERNEL);
if (!isi) {
BUG();
return NULL;
}
isi->addr = ioremap(hpa, 4096);
isi->isi_hpa = hpa;
isi->isi_version = iosapic_rd_version(isi);
isi->isi_num_vectors = IOSAPIC_IRDT_MAX_ENTRY(isi->isi_version) + 1;
vip = isi->isi_vector = kcalloc(isi->isi_num_vectors,
sizeof(struct vector_info), GFP_KERNEL);
if (vip == NULL) {
kfree(isi);
return NULL;
}
for (cnt=0; cnt < isi->isi_num_vectors; cnt++, vip++) {
vip->irqline = (unsigned char) cnt;
vip->iosapic = isi;
}
isi->isi_next = iosapic_list;
iosapic_list = isi;
return isi;
}
#ifdef DEBUG_IOSAPIC
static void
iosapic_prt_irt(void *irt, long num_entry)
{
unsigned int i, *irp = (unsigned int *) irt;
printk(KERN_DEBUG MODULE_NAME ": Interrupt Routing Table (%lx entries)\n", num_entry);
for (i=0; i<num_entry; i++, irp += 4) {
printk(KERN_DEBUG "%p : %2d %.8x %.8x %.8x %.8x\n",
irp, i, irp[0], irp[1], irp[2], irp[3]);
}
}
static void
iosapic_prt_vi(struct vector_info *vi)
{
printk(KERN_DEBUG MODULE_NAME ": vector_info[%d] is at %p\n", vi->irqline, vi);
printk(KERN_DEBUG "\t\tstatus: %.4x\n", vi->status);
printk(KERN_DEBUG "\t\ttxn_irq: %d\n", vi->txn_irq);
printk(KERN_DEBUG "\t\ttxn_addr: %lx\n", vi->txn_addr);
printk(KERN_DEBUG "\t\ttxn_data: %lx\n", vi->txn_data);
printk(KERN_DEBUG "\t\teoi_addr: %p\n", vi->eoi_addr);
printk(KERN_DEBUG "\t\teoi_data: %x\n", vi->eoi_data);
}
static void
iosapic_prt_isi(struct iosapic_info *isi)
{
printk(KERN_DEBUG MODULE_NAME ": io_sapic_info at %p\n", isi);
printk(KERN_DEBUG "\t\tisi_hpa: %lx\n", isi->isi_hpa);
printk(KERN_DEBUG "\t\tisi_status: %x\n", isi->isi_status);
printk(KERN_DEBUG "\t\tisi_version: %x\n", isi->isi_version);
printk(KERN_DEBUG "\t\tisi_vector: %p\n", isi->isi_vector);
}
#endif /* DEBUG_IOSAPIC */