acrn-kernel/arch/mn10300/kernel/time.c

211 lines
5.1 KiB
C

/* MN10300 Low level time management
*
* Copyright (C) 2007-2008 Red Hat, Inc. All Rights Reserved.
* Written by David Howells (dhowells@redhat.com)
* - Derived from arch/i386/kernel/time.c
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public Licence
* as published by the Free Software Foundation; either version
* 2 of the Licence, or (at your option) any later version.
*/
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/interrupt.h>
#include <linux/time.h>
#include <linux/init.h>
#include <linux/smp.h>
#include <linux/profile.h>
#include <linux/cnt32_to_63.h>
#include <linux/clocksource.h>
#include <linux/clockchips.h>
#include <asm/irq.h>
#include <asm/div64.h>
#include <asm/processor.h>
#include <asm/intctl-regs.h>
#include <asm/rtc.h>
#include "internal.h"
static unsigned long mn10300_last_tsc; /* time-stamp counter at last time
* interrupt occurred */
static unsigned long sched_clock_multiplier;
/*
* scheduler clock - returns current time in nanosec units.
*/
unsigned long long sched_clock(void)
{
union {
unsigned long long ll;
unsigned l[2];
} tsc64, result;
unsigned long tmp;
unsigned product[3]; /* 96-bit intermediate value */
/* cnt32_to_63() is not safe with preemption */
preempt_disable();
/* expand the tsc to 64-bits.
* - sched_clock() must be called once a minute or better or the
* following will go horribly wrong - see cnt32_to_63()
*/
tsc64.ll = cnt32_to_63(get_cycles()) & 0x7fffffffffffffffULL;
preempt_enable();
/* scale the 64-bit TSC value to a nanosecond value via a 96-bit
* intermediate
*/
asm("mulu %2,%0,%3,%0 \n" /* LSW * mult -> 0:%3:%0 */
"mulu %2,%1,%2,%1 \n" /* MSW * mult -> %2:%1:0 */
"add %3,%1 \n"
"addc 0,%2 \n" /* result in %2:%1:%0 */
: "=r"(product[0]), "=r"(product[1]), "=r"(product[2]), "=r"(tmp)
: "0"(tsc64.l[0]), "1"(tsc64.l[1]), "2"(sched_clock_multiplier)
: "cc");
result.l[0] = product[1] << 16 | product[0] >> 16;
result.l[1] = product[2] << 16 | product[1] >> 16;
return result.ll;
}
/*
* initialise the scheduler clock
*/
static void __init mn10300_sched_clock_init(void)
{
sched_clock_multiplier =
__muldiv64u(NSEC_PER_SEC, 1 << 16, MN10300_TSCCLK);
}
/**
* local_timer_interrupt - Local timer interrupt handler
*
* Handle local timer interrupts for this CPU. They may have been propagated
* to this CPU from the CPU that actually gets them by way of an IPI.
*/
irqreturn_t local_timer_interrupt(void)
{
profile_tick(CPU_PROFILING);
update_process_times(user_mode(get_irq_regs()));
return IRQ_HANDLED;
}
#ifndef CONFIG_GENERIC_TIME
/*
* advance the kernel's time keeping clocks (xtime and jiffies)
* - we use Timer 0 & 1 cascaded as a clock to nudge us the next time
* there's a need to update
*/
static irqreturn_t timer_interrupt(int irq, void *dev_id)
{
unsigned tsc, elapse;
irqreturn_t ret;
write_seqlock(&xtime_lock);
while (tsc = get_cycles(),
elapse = tsc - mn10300_last_tsc, /* time elapsed since last
* tick */
elapse > MN10300_TSC_PER_HZ
) {
mn10300_last_tsc += MN10300_TSC_PER_HZ;
/* advance the kernel's time tracking system */
do_timer(1);
}
write_sequnlock(&xtime_lock);
ret = local_timer_interrupt();
#ifdef CONFIG_SMP
send_IPI_allbutself(LOCAL_TIMER_IPI);
#endif
return ret;
}
static struct irqaction timer_irq = {
.handler = timer_interrupt,
.flags = IRQF_DISABLED | IRQF_SHARED | IRQF_TIMER,
.name = "timer",
};
#endif /* CONFIG_GENERIC_TIME */
#ifdef CONFIG_CSRC_MN10300
void __init clocksource_set_clock(struct clocksource *cs, unsigned int clock)
{
u64 temp;
u32 shift;
/* Find a shift value */
for (shift = 32; shift > 0; shift--) {
temp = (u64) NSEC_PER_SEC << shift;
do_div(temp, clock);
if ((temp >> 32) == 0)
break;
}
cs->shift = shift;
cs->mult = (u32) temp;
}
#endif
#if CONFIG_CEVT_MN10300
void __cpuinit clockevent_set_clock(struct clock_event_device *cd,
unsigned int clock)
{
u64 temp;
u32 shift;
/* Find a shift value */
for (shift = 32; shift > 0; shift--) {
temp = (u64) clock << shift;
do_div(temp, NSEC_PER_SEC);
if ((temp >> 32) == 0)
break;
}
cd->shift = shift;
cd->mult = (u32) temp;
}
#endif
/*
* initialise the various timers used by the main part of the kernel
*/
void __init time_init(void)
{
/* we need the prescalar running to be able to use IOCLK/8
* - IOCLK runs at 1/4 (ST5 open) or 1/8 (ST5 closed) internal CPU clock
* - IOCLK runs at Fosc rate (crystal speed)
*/
TMPSCNT |= TMPSCNT_ENABLE;
#ifdef CONFIG_GENERIC_TIME
init_clocksource();
#else
startup_timestamp_counter();
#endif
printk(KERN_INFO
"timestamp counter I/O clock running at %lu.%02lu"
" (calibrated against RTC)\n",
MN10300_TSCCLK / 1000000, (MN10300_TSCCLK / 10000) % 100);
mn10300_last_tsc = read_timestamp_counter();
#ifdef CONFIG_GENERIC_CLOCKEVENTS
init_clockevents();
#else
reload_jiffies_counter(MN10300_JC_PER_HZ - 1);
setup_jiffies_interrupt(TMJCIRQ, &timer_irq, CONFIG_TIMER_IRQ_LEVEL);
#endif
#ifdef CONFIG_MN10300_WD_TIMER
/* start the watchdog timer */
watchdog_go();
#endif
mn10300_sched_clock_init();
}