162 lines
3.6 KiB
C
162 lines
3.6 KiB
C
#include <linux/linkage.h>
|
|
#include <linux/sched.h>
|
|
|
|
#include <asm/pmon.h>
|
|
#include <asm/titan_dep.h>
|
|
#include <asm/time.h>
|
|
|
|
#define LAUNCHSTACK_SIZE 256
|
|
|
|
static __initdata DEFINE_SPINLOCK(launch_lock);
|
|
|
|
static unsigned long secondary_sp __initdata;
|
|
static unsigned long secondary_gp __initdata;
|
|
|
|
static unsigned char launchstack[LAUNCHSTACK_SIZE] __initdata
|
|
__attribute__((aligned(2 * sizeof(long))));
|
|
|
|
static void __init prom_smp_bootstrap(void)
|
|
{
|
|
local_irq_disable();
|
|
|
|
while (spin_is_locked(&launch_lock));
|
|
|
|
__asm__ __volatile__(
|
|
" move $sp, %0 \n"
|
|
" move $gp, %1 \n"
|
|
" j smp_bootstrap \n"
|
|
:
|
|
: "r" (secondary_sp), "r" (secondary_gp));
|
|
}
|
|
|
|
/*
|
|
* PMON is a fragile beast. It'll blow up once the mappings it's littering
|
|
* right into the middle of KSEG3 are blown away so we have to grab the slave
|
|
* core early and keep it in a waiting loop.
|
|
*/
|
|
void __init prom_grab_secondary(void)
|
|
{
|
|
spin_lock(&launch_lock);
|
|
|
|
pmon_cpustart(1, &prom_smp_bootstrap,
|
|
launchstack + LAUNCHSTACK_SIZE, 0);
|
|
}
|
|
|
|
/*
|
|
* Detect available CPUs, populate phys_cpu_present_map before smp_init
|
|
*
|
|
* We don't want to start the secondary CPU yet nor do we have a nice probing
|
|
* feature in PMON so we just assume presence of the secondary core.
|
|
*/
|
|
void __init plat_smp_setup(void)
|
|
{
|
|
int i;
|
|
|
|
cpus_clear(phys_cpu_present_map);
|
|
|
|
for (i = 0; i < 2; i++) {
|
|
cpu_set(i, phys_cpu_present_map);
|
|
__cpu_number_map[i] = i;
|
|
__cpu_logical_map[i] = i;
|
|
}
|
|
}
|
|
|
|
void __init plat_prepare_cpus(unsigned int max_cpus)
|
|
{
|
|
/*
|
|
* Be paranoid. Enable the IPI only if we're really about to go SMP.
|
|
*/
|
|
if (cpus_weight(cpu_possible_map))
|
|
set_c0_status(STATUSF_IP5);
|
|
}
|
|
|
|
/*
|
|
* Firmware CPU startup hook
|
|
* Complicated by PMON's weird interface which tries to minimic the UNIX fork.
|
|
* It launches the next * available CPU and copies some information on the
|
|
* stack so the first thing we do is throw away that stuff and load useful
|
|
* values into the registers ...
|
|
*/
|
|
void __cpuinit prom_boot_secondary(int cpu, struct task_struct *idle)
|
|
{
|
|
unsigned long gp = (unsigned long) task_thread_info(idle);
|
|
unsigned long sp = __KSTK_TOS(idle);
|
|
|
|
secondary_sp = sp;
|
|
secondary_gp = gp;
|
|
|
|
spin_unlock(&launch_lock);
|
|
}
|
|
|
|
/* Hook for after all CPUs are online */
|
|
void prom_cpus_done(void)
|
|
{
|
|
}
|
|
|
|
/*
|
|
* After we've done initial boot, this function is called to allow the
|
|
* board code to clean up state, if needed
|
|
*/
|
|
void __cpuinit prom_init_secondary(void)
|
|
{
|
|
set_c0_status(ST0_CO | ST0_IE | ST0_IM);
|
|
}
|
|
|
|
void __cpuinit prom_smp_finish(void)
|
|
{
|
|
}
|
|
|
|
void titan_mailbox_irq(void)
|
|
{
|
|
int cpu = smp_processor_id();
|
|
unsigned long status;
|
|
|
|
switch (cpu) {
|
|
case 0:
|
|
status = OCD_READ(RM9000x2_OCD_INTP0STATUS3);
|
|
OCD_WRITE(RM9000x2_OCD_INTP0CLEAR3, status);
|
|
|
|
if (status & 0x2)
|
|
smp_call_function_interrupt();
|
|
break;
|
|
|
|
case 1:
|
|
status = OCD_READ(RM9000x2_OCD_INTP1STATUS3);
|
|
OCD_WRITE(RM9000x2_OCD_INTP1CLEAR3, status);
|
|
|
|
if (status & 0x2)
|
|
smp_call_function_interrupt();
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Send inter-processor interrupt
|
|
*/
|
|
void core_send_ipi(int cpu, unsigned int action)
|
|
{
|
|
/*
|
|
* Generate an INTMSG so that it can be sent over to the
|
|
* destination CPU. The INTMSG will put the STATUS bits
|
|
* based on the action desired. An alternative strategy
|
|
* is to write to the Interrupt Set register, read the
|
|
* Interrupt Status register and clear the Interrupt
|
|
* Clear register. The latter is preffered.
|
|
*/
|
|
switch (action) {
|
|
case SMP_RESCHEDULE_YOURSELF:
|
|
if (cpu == 1)
|
|
OCD_WRITE(RM9000x2_OCD_INTP1SET3, 4);
|
|
else
|
|
OCD_WRITE(RM9000x2_OCD_INTP0SET3, 4);
|
|
break;
|
|
|
|
case SMP_CALL_FUNCTION:
|
|
if (cpu == 1)
|
|
OCD_WRITE(RM9000x2_OCD_INTP1SET3, 2);
|
|
else
|
|
OCD_WRITE(RM9000x2_OCD_INTP0SET3, 2);
|
|
break;
|
|
}
|
|
}
|