acrn-kernel/drivers/sh/pfc/core.c

573 lines
12 KiB
C

/*
* SuperH Pin Function Controller support.
*
* Copyright (C) 2008 Magnus Damm
* Copyright (C) 2009 - 2012 Paul Mundt
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*/
#define pr_fmt(fmt) "sh_pfc " KBUILD_MODNAME ": " fmt
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/sh_pfc.h>
#include <linux/module.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/bitops.h>
#include <linux/slab.h>
#include <linux/ioport.h>
#include <linux/pinctrl/machine.h>
static struct sh_pfc *sh_pfc __read_mostly;
static inline bool sh_pfc_initialized(void)
{
return !!sh_pfc;
}
static void pfc_iounmap(struct sh_pfc *pfc)
{
int k;
for (k = 0; k < pfc->num_resources; k++)
if (pfc->window[k].virt)
iounmap(pfc->window[k].virt);
kfree(pfc->window);
pfc->window = NULL;
}
static int pfc_ioremap(struct sh_pfc *pfc)
{
struct resource *res;
int k;
if (!pfc->num_resources)
return 0;
pfc->window = kzalloc(pfc->num_resources * sizeof(*pfc->window),
GFP_NOWAIT);
if (!pfc->window)
goto err1;
for (k = 0; k < pfc->num_resources; k++) {
res = pfc->resource + k;
WARN_ON(resource_type(res) != IORESOURCE_MEM);
pfc->window[k].phys = res->start;
pfc->window[k].size = resource_size(res);
pfc->window[k].virt = ioremap_nocache(res->start,
resource_size(res));
if (!pfc->window[k].virt)
goto err2;
}
return 0;
err2:
pfc_iounmap(pfc);
err1:
return -1;
}
static void __iomem *pfc_phys_to_virt(struct sh_pfc *pfc,
unsigned long address)
{
struct pfc_window *window;
int k;
/* scan through physical windows and convert address */
for (k = 0; k < pfc->num_resources; k++) {
window = pfc->window + k;
if (address < window->phys)
continue;
if (address >= (window->phys + window->size))
continue;
return window->virt + (address - window->phys);
}
/* no windows defined, register must be 1:1 mapped virt:phys */
return (void __iomem *)address;
}
static int enum_in_range(pinmux_enum_t enum_id, struct pinmux_range *r)
{
if (enum_id < r->begin)
return 0;
if (enum_id > r->end)
return 0;
return 1;
}
static unsigned long gpio_read_raw_reg(void __iomem *mapped_reg,
unsigned long reg_width)
{
switch (reg_width) {
case 8:
return ioread8(mapped_reg);
case 16:
return ioread16(mapped_reg);
case 32:
return ioread32(mapped_reg);
}
BUG();
return 0;
}
static void gpio_write_raw_reg(void __iomem *mapped_reg,
unsigned long reg_width,
unsigned long data)
{
switch (reg_width) {
case 8:
iowrite8(data, mapped_reg);
return;
case 16:
iowrite16(data, mapped_reg);
return;
case 32:
iowrite32(data, mapped_reg);
return;
}
BUG();
}
int sh_pfc_read_bit(struct pinmux_data_reg *dr, unsigned long in_pos)
{
unsigned long pos;
pos = dr->reg_width - (in_pos + 1);
pr_debug("read_bit: addr = %lx, pos = %ld, "
"r_width = %ld\n", dr->reg, pos, dr->reg_width);
return (gpio_read_raw_reg(dr->mapped_reg, dr->reg_width) >> pos) & 1;
}
EXPORT_SYMBOL_GPL(sh_pfc_read_bit);
void sh_pfc_write_bit(struct pinmux_data_reg *dr, unsigned long in_pos,
unsigned long value)
{
unsigned long pos;
pos = dr->reg_width - (in_pos + 1);
pr_debug("write_bit addr = %lx, value = %d, pos = %ld, "
"r_width = %ld\n",
dr->reg, !!value, pos, dr->reg_width);
if (value)
set_bit(pos, &dr->reg_shadow);
else
clear_bit(pos, &dr->reg_shadow);
gpio_write_raw_reg(dr->mapped_reg, dr->reg_width, dr->reg_shadow);
}
EXPORT_SYMBOL_GPL(sh_pfc_write_bit);
static void config_reg_helper(struct sh_pfc *pfc,
struct pinmux_cfg_reg *crp,
unsigned long in_pos,
void __iomem **mapped_regp,
unsigned long *maskp,
unsigned long *posp)
{
int k;
*mapped_regp = pfc_phys_to_virt(pfc, crp->reg);
if (crp->field_width) {
*maskp = (1 << crp->field_width) - 1;
*posp = crp->reg_width - ((in_pos + 1) * crp->field_width);
} else {
*maskp = (1 << crp->var_field_width[in_pos]) - 1;
*posp = crp->reg_width;
for (k = 0; k <= in_pos; k++)
*posp -= crp->var_field_width[k];
}
}
static int read_config_reg(struct sh_pfc *pfc,
struct pinmux_cfg_reg *crp,
unsigned long field)
{
void __iomem *mapped_reg;
unsigned long mask, pos;
config_reg_helper(pfc, crp, field, &mapped_reg, &mask, &pos);
pr_debug("read_reg: addr = %lx, field = %ld, "
"r_width = %ld, f_width = %ld\n",
crp->reg, field, crp->reg_width, crp->field_width);
return (gpio_read_raw_reg(mapped_reg, crp->reg_width) >> pos) & mask;
}
static void write_config_reg(struct sh_pfc *pfc,
struct pinmux_cfg_reg *crp,
unsigned long field, unsigned long value)
{
void __iomem *mapped_reg;
unsigned long mask, pos, data;
config_reg_helper(pfc, crp, field, &mapped_reg, &mask, &pos);
pr_debug("write_reg addr = %lx, value = %ld, field = %ld, "
"r_width = %ld, f_width = %ld\n",
crp->reg, value, field, crp->reg_width, crp->field_width);
mask = ~(mask << pos);
value = value << pos;
data = gpio_read_raw_reg(mapped_reg, crp->reg_width);
data &= mask;
data |= value;
if (pfc->unlock_reg)
gpio_write_raw_reg(pfc_phys_to_virt(pfc, pfc->unlock_reg),
32, ~data);
gpio_write_raw_reg(mapped_reg, crp->reg_width, data);
}
static int setup_data_reg(struct sh_pfc *pfc, unsigned gpio)
{
struct pinmux_gpio *gpiop = &pfc->gpios[gpio];
struct pinmux_data_reg *data_reg;
int k, n;
if (!enum_in_range(gpiop->enum_id, &pfc->data))
return -1;
k = 0;
while (1) {
data_reg = pfc->data_regs + k;
if (!data_reg->reg_width)
break;
data_reg->mapped_reg = pfc_phys_to_virt(pfc, data_reg->reg);
for (n = 0; n < data_reg->reg_width; n++) {
if (data_reg->enum_ids[n] == gpiop->enum_id) {
gpiop->flags &= ~PINMUX_FLAG_DREG;
gpiop->flags |= (k << PINMUX_FLAG_DREG_SHIFT);
gpiop->flags &= ~PINMUX_FLAG_DBIT;
gpiop->flags |= (n << PINMUX_FLAG_DBIT_SHIFT);
return 0;
}
}
k++;
}
BUG();
return -1;
}
static void setup_data_regs(struct sh_pfc *pfc)
{
struct pinmux_data_reg *drp;
int k;
for (k = pfc->first_gpio; k <= pfc->last_gpio; k++)
setup_data_reg(pfc, k);
k = 0;
while (1) {
drp = pfc->data_regs + k;
if (!drp->reg_width)
break;
drp->reg_shadow = gpio_read_raw_reg(drp->mapped_reg,
drp->reg_width);
k++;
}
}
int sh_pfc_get_data_reg(struct sh_pfc *pfc, unsigned gpio,
struct pinmux_data_reg **drp, int *bitp)
{
struct pinmux_gpio *gpiop = &pfc->gpios[gpio];
int k, n;
if (!enum_in_range(gpiop->enum_id, &pfc->data))
return -1;
k = (gpiop->flags & PINMUX_FLAG_DREG) >> PINMUX_FLAG_DREG_SHIFT;
n = (gpiop->flags & PINMUX_FLAG_DBIT) >> PINMUX_FLAG_DBIT_SHIFT;
*drp = pfc->data_regs + k;
*bitp = n;
return 0;
}
EXPORT_SYMBOL_GPL(sh_pfc_get_data_reg);
static int get_config_reg(struct sh_pfc *pfc, pinmux_enum_t enum_id,
struct pinmux_cfg_reg **crp,
int *fieldp, int *valuep,
unsigned long **cntp)
{
struct pinmux_cfg_reg *config_reg;
unsigned long r_width, f_width, curr_width, ncomb;
int k, m, n, pos, bit_pos;
k = 0;
while (1) {
config_reg = pfc->cfg_regs + k;
r_width = config_reg->reg_width;
f_width = config_reg->field_width;
if (!r_width)
break;
pos = 0;
m = 0;
for (bit_pos = 0; bit_pos < r_width; bit_pos += curr_width) {
if (f_width)
curr_width = f_width;
else
curr_width = config_reg->var_field_width[m];
ncomb = 1 << curr_width;
for (n = 0; n < ncomb; n++) {
if (config_reg->enum_ids[pos + n] == enum_id) {
*crp = config_reg;
*fieldp = m;
*valuep = n;
*cntp = &config_reg->cnt[m];
return 0;
}
}
pos += ncomb;
m++;
}
k++;
}
return -1;
}
int sh_pfc_gpio_to_enum(struct sh_pfc *pfc, unsigned gpio, int pos,
pinmux_enum_t *enum_idp)
{
pinmux_enum_t enum_id = pfc->gpios[gpio].enum_id;
pinmux_enum_t *data = pfc->gpio_data;
int k;
if (!enum_in_range(enum_id, &pfc->data)) {
if (!enum_in_range(enum_id, &pfc->mark)) {
pr_err("non data/mark enum_id for gpio %d\n", gpio);
return -1;
}
}
if (pos) {
*enum_idp = data[pos + 1];
return pos + 1;
}
for (k = 0; k < pfc->gpio_data_size; k++) {
if (data[k] == enum_id) {
*enum_idp = data[k + 1];
return k + 1;
}
}
pr_err("cannot locate data/mark enum_id for gpio %d\n", gpio);
return -1;
}
EXPORT_SYMBOL_GPL(sh_pfc_gpio_to_enum);
int sh_pfc_config_gpio(struct sh_pfc *pfc, unsigned gpio, int pinmux_type,
int cfg_mode)
{
struct pinmux_cfg_reg *cr = NULL;
pinmux_enum_t enum_id;
struct pinmux_range *range;
int in_range, pos, field, value;
unsigned long *cntp;
switch (pinmux_type) {
case PINMUX_TYPE_FUNCTION:
range = NULL;
break;
case PINMUX_TYPE_OUTPUT:
range = &pfc->output;
break;
case PINMUX_TYPE_INPUT:
range = &pfc->input;
break;
case PINMUX_TYPE_INPUT_PULLUP:
range = &pfc->input_pu;
break;
case PINMUX_TYPE_INPUT_PULLDOWN:
range = &pfc->input_pd;
break;
default:
goto out_err;
}
pos = 0;
enum_id = 0;
field = 0;
value = 0;
while (1) {
pos = sh_pfc_gpio_to_enum(pfc, gpio, pos, &enum_id);
if (pos <= 0)
goto out_err;
if (!enum_id)
break;
/* first check if this is a function enum */
in_range = enum_in_range(enum_id, &pfc->function);
if (!in_range) {
/* not a function enum */
if (range) {
/*
* other range exists, so this pin is
* a regular GPIO pin that now is being
* bound to a specific direction.
*
* for this case we only allow function enums
* and the enums that match the other range.
*/
in_range = enum_in_range(enum_id, range);
/*
* special case pass through for fixed
* input-only or output-only pins without
* function enum register association.
*/
if (in_range && enum_id == range->force)
continue;
} else {
/*
* no other range exists, so this pin
* must then be of the function type.
*
* allow function type pins to select
* any combination of function/in/out
* in their MARK lists.
*/
in_range = 1;
}
}
if (!in_range)
continue;
if (get_config_reg(pfc, enum_id, &cr,
&field, &value, &cntp) != 0)
goto out_err;
switch (cfg_mode) {
case GPIO_CFG_DRYRUN:
if (!*cntp ||
(read_config_reg(pfc, cr, field) != value))
continue;
break;
case GPIO_CFG_REQ:
write_config_reg(pfc, cr, field, value);
*cntp = *cntp + 1;
break;
case GPIO_CFG_FREE:
*cntp = *cntp - 1;
break;
}
}
return 0;
out_err:
return -1;
}
EXPORT_SYMBOL_GPL(sh_pfc_config_gpio);
int register_sh_pfc(struct sh_pfc *pfc)
{
int (*initroutine)(struct sh_pfc *) = NULL;
int ret;
/*
* Ensure that the type encoding fits
*/
BUILD_BUG_ON(PINMUX_FLAG_TYPE > ((1 << PINMUX_FLAG_DBIT_SHIFT) - 1));
if (sh_pfc)
return -EBUSY;
ret = pfc_ioremap(pfc);
if (unlikely(ret < 0))
return ret;
spin_lock_init(&pfc->lock);
pinctrl_provide_dummies();
setup_data_regs(pfc);
sh_pfc = pfc;
/*
* Initialize pinctrl bindings first
*/
initroutine = symbol_request(sh_pfc_register_pinctrl);
if (initroutine) {
ret = (*initroutine)(pfc);
symbol_put_addr(initroutine);
if (unlikely(ret != 0))
goto err;
} else {
pr_err("failed to initialize pinctrl bindings\n");
goto err;
}
/*
* Then the GPIO chip
*/
initroutine = symbol_request(sh_pfc_register_gpiochip);
if (initroutine) {
ret = (*initroutine)(pfc);
symbol_put_addr(initroutine);
/*
* If the GPIO chip fails to come up we still leave the
* PFC state as it is, given that there are already
* extant users of it that have succeeded by this point.
*/
if (unlikely(ret != 0)) {
pr_notice("failed to init GPIO chip, ignoring...\n");
ret = 0;
}
}
pr_info("%s support registered\n", pfc->name);
return 0;
err:
pfc_iounmap(pfc);
sh_pfc = NULL;
return ret;
}