acrn-kernel/sound/drivers/portman2x4.c

879 lines
25 KiB
C

/*
* Driver for Midiman Portman2x4 parallel port midi interface
*
* Copyright (c) by Levent Guendogdu <levon@feature-it.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
* ChangeLog
* Jan 24 2007 Matthias Koenig <mkoenig@suse.de>
* - cleanup and rewrite
* Sep 30 2004 Tobias Gehrig <tobias@gehrig.tk>
* - source code cleanup
* Sep 03 2004 Tobias Gehrig <tobias@gehrig.tk>
* - fixed compilation problem with alsa 1.0.6a (removed MODULE_CLASSES,
* MODULE_PARM_SYNTAX and changed MODULE_DEVICES to
* MODULE_SUPPORTED_DEVICE)
* Mar 24 2004 Tobias Gehrig <tobias@gehrig.tk>
* - added 2.6 kernel support
* Mar 18 2004 Tobias Gehrig <tobias@gehrig.tk>
* - added parport_unregister_driver to the startup routine if the driver fails to detect a portman
* - added support for all 4 output ports in portman_putmidi
* Mar 17 2004 Tobias Gehrig <tobias@gehrig.tk>
* - added checks for opened input device in interrupt handler
* Feb 20 2004 Tobias Gehrig <tobias@gehrig.tk>
* - ported from alsa 0.5 to 1.0
*/
#include <linux/init.h>
#include <linux/platform_device.h>
#include <linux/parport.h>
#include <linux/spinlock.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <sound/core.h>
#include <sound/initval.h>
#include <sound/rawmidi.h>
#include <sound/control.h>
#define CARD_NAME "Portman 2x4"
#define DRIVER_NAME "portman"
#define PLATFORM_DRIVER "snd_portman2x4"
static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;
static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;
static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;
static struct platform_device *platform_devices[SNDRV_CARDS];
static int device_count;
module_param_array(index, int, NULL, S_IRUGO);
MODULE_PARM_DESC(index, "Index value for " CARD_NAME " soundcard.");
module_param_array(id, charp, NULL, S_IRUGO);
MODULE_PARM_DESC(id, "ID string for " CARD_NAME " soundcard.");
module_param_array(enable, bool, NULL, S_IRUGO);
MODULE_PARM_DESC(enable, "Enable " CARD_NAME " soundcard.");
MODULE_AUTHOR("Levent Guendogdu, Tobias Gehrig, Matthias Koenig");
MODULE_DESCRIPTION("Midiman Portman2x4");
MODULE_LICENSE("GPL");
MODULE_SUPPORTED_DEVICE("{{Midiman,Portman2x4}}");
/*********************************************************************
* Chip specific
*********************************************************************/
#define PORTMAN_NUM_INPUT_PORTS 2
#define PORTMAN_NUM_OUTPUT_PORTS 4
struct portman {
spinlock_t reg_lock;
struct snd_card *card;
struct snd_rawmidi *rmidi;
struct pardevice *pardev;
int pardev_claimed;
int open_count;
int mode[PORTMAN_NUM_INPUT_PORTS];
struct snd_rawmidi_substream *midi_input[PORTMAN_NUM_INPUT_PORTS];
};
static int portman_free(struct portman *pm)
{
kfree(pm);
return 0;
}
static int __devinit portman_create(struct snd_card *card,
struct pardevice *pardev,
struct portman **rchip)
{
struct portman *pm;
*rchip = NULL;
pm = kzalloc(sizeof(struct portman), GFP_KERNEL);
if (pm == NULL)
return -ENOMEM;
/* Init chip specific data */
spin_lock_init(&pm->reg_lock);
pm->card = card;
pm->pardev = pardev;
*rchip = pm;
return 0;
}
/*********************************************************************
* HW related constants
*********************************************************************/
/* Standard PC parallel port status register equates. */
#define PP_STAT_BSY 0x80 /* Busy status. Inverted. */
#define PP_STAT_ACK 0x40 /* Acknowledge. Non-Inverted. */
#define PP_STAT_POUT 0x20 /* Paper Out. Non-Inverted. */
#define PP_STAT_SEL 0x10 /* Select. Non-Inverted. */
#define PP_STAT_ERR 0x08 /* Error. Non-Inverted. */
/* Standard PC parallel port command register equates. */
#define PP_CMD_IEN 0x10 /* IRQ Enable. Non-Inverted. */
#define PP_CMD_SELI 0x08 /* Select Input. Inverted. */
#define PP_CMD_INIT 0x04 /* Init Printer. Non-Inverted. */
#define PP_CMD_FEED 0x02 /* Auto Feed. Inverted. */
#define PP_CMD_STB 0x01 /* Strobe. Inverted. */
/* Parallel Port Command Register as implemented by PCP2x4. */
#define INT_EN PP_CMD_IEN /* Interrupt enable. */
#define STROBE PP_CMD_STB /* Command strobe. */
/* The parallel port command register field (b1..b3) selects the
* various "registers" within the PC/P 2x4. These are the internal
* address of these "registers" that must be written to the parallel
* port command register.
*/
#define RXDATA0 (0 << 1) /* PCP RxData channel 0. */
#define RXDATA1 (1 << 1) /* PCP RxData channel 1. */
#define GEN_CTL (2 << 1) /* PCP General Control Register. */
#define SYNC_CTL (3 << 1) /* PCP Sync Control Register. */
#define TXDATA0 (4 << 1) /* PCP TxData channel 0. */
#define TXDATA1 (5 << 1) /* PCP TxData channel 1. */
#define TXDATA2 (6 << 1) /* PCP TxData channel 2. */
#define TXDATA3 (7 << 1) /* PCP TxData channel 3. */
/* Parallel Port Status Register as implemented by PCP2x4. */
#define ESTB PP_STAT_POUT /* Echoed strobe. */
#define INT_REQ PP_STAT_ACK /* Input data int request. */
#define BUSY PP_STAT_ERR /* Interface Busy. */
/* Parallel Port Status Register BUSY and SELECT lines are multiplexed
* between several functions. Depending on which 2x4 "register" is
* currently selected (b1..b3), the BUSY and SELECT lines are
* assigned as follows:
*
* SELECT LINE: A3 A2 A1
* --------
*/
#define RXAVAIL PP_STAT_SEL /* Rx Available, channel 0. 0 0 0 */
// RXAVAIL1 PP_STAT_SEL /* Rx Available, channel 1. 0 0 1 */
#define SYNC_STAT PP_STAT_SEL /* Reserved - Sync Status. 0 1 0 */
// /* Reserved. 0 1 1 */
#define TXEMPTY PP_STAT_SEL /* Tx Empty, channel 0. 1 0 0 */
// TXEMPTY1 PP_STAT_SEL /* Tx Empty, channel 1. 1 0 1 */
// TXEMPTY2 PP_STAT_SEL /* Tx Empty, channel 2. 1 1 0 */
// TXEMPTY3 PP_STAT_SEL /* Tx Empty, channel 3. 1 1 1 */
/* BUSY LINE: A3 A2 A1
* --------
*/
#define RXDATA PP_STAT_BSY /* Rx Input Data, channel 0. 0 0 0 */
// RXDATA1 PP_STAT_BSY /* Rx Input Data, channel 1. 0 0 1 */
#define SYNC_DATA PP_STAT_BSY /* Reserved - Sync Data. 0 1 0 */
/* Reserved. 0 1 1 */
#define DATA_ECHO PP_STAT_BSY /* Parallel Port Data Echo. 1 0 0 */
#define A0_ECHO PP_STAT_BSY /* Address 0 Echo. 1 0 1 */
#define A1_ECHO PP_STAT_BSY /* Address 1 Echo. 1 1 0 */
#define A2_ECHO PP_STAT_BSY /* Address 2 Echo. 1 1 1 */
#define PORTMAN2X4_MODE_INPUT_TRIGGERED 0x01
/*********************************************************************
* Hardware specific functions
*********************************************************************/
static inline void portman_write_command(struct portman *pm, u8 value)
{
parport_write_control(pm->pardev->port, value);
}
static inline u8 portman_read_command(struct portman *pm)
{
return parport_read_control(pm->pardev->port);
}
static inline u8 portman_read_status(struct portman *pm)
{
return parport_read_status(pm->pardev->port);
}
static inline u8 portman_read_data(struct portman *pm)
{
return parport_read_data(pm->pardev->port);
}
static inline void portman_write_data(struct portman *pm, u8 value)
{
parport_write_data(pm->pardev->port, value);
}
static void portman_write_midi(struct portman *pm,
int port, u8 mididata)
{
int command = ((port + 4) << 1);
/* Get entering data byte and port number in BL and BH respectively.
* Set up Tx Channel address field for use with PP Cmd Register.
* Store address field in BH register.
* Inputs: AH = Output port number (0..3).
* AL = Data byte.
* command = TXDATA0 | INT_EN;
* Align port num with address field (b1...b3),
* set address for TXDatax, Strobe=0
*/
command |= INT_EN;
/* Disable interrupts so that the process is not interrupted, then
* write the address associated with the current Tx channel to the
* PP Command Reg. Do not set the Strobe signal yet.
*/
do {
portman_write_command(pm, command);
/* While the address lines settle, write parallel output data to
* PP Data Reg. This has no effect until Strobe signal is asserted.
*/
portman_write_data(pm, mididata);
/* If PCP channel's TxEmpty is set (TxEmpty is read through the PP
* Status Register), then go write data. Else go back and wait.
*/
} while ((portman_read_status(pm) & TXEMPTY) != TXEMPTY);
/* TxEmpty is set. Maintain PC/P destination address and assert
* Strobe through the PP Command Reg. This will Strobe data into
* the PC/P transmitter and set the PC/P BUSY signal.
*/
portman_write_command(pm, command | STROBE);
/* Wait for strobe line to settle and echo back through hardware.
* Once it has echoed back, assume that the address and data lines
* have settled!
*/
while ((portman_read_status(pm) & ESTB) == 0)
cpu_relax();
/* Release strobe and immediately re-allow interrupts. */
portman_write_command(pm, command);
while ((portman_read_status(pm) & ESTB) == ESTB)
cpu_relax();
/* PC/P BUSY is now set. We must wait until BUSY resets itself.
* We'll reenable ints while we're waiting.
*/
while ((portman_read_status(pm) & BUSY) == BUSY)
cpu_relax();
/* Data sent. */
}
/*
* Read MIDI byte from port
* Attempt to read input byte from specified hardware input port (0..).
* Return -1 if no data
*/
static int portman_read_midi(struct portman *pm, int port)
{
unsigned char midi_data = 0;
unsigned char cmdout; /* Saved address+IE bit. */
/* Make sure clocking edge is down before starting... */
portman_write_data(pm, 0); /* Make sure edge is down. */
/* Set destination address to PCP. */
cmdout = (port << 1) | INT_EN; /* Address + IE + No Strobe. */
portman_write_command(pm, cmdout);
while ((portman_read_status(pm) & ESTB) == ESTB)
cpu_relax(); /* Wait for strobe echo. */
/* After the address lines settle, check multiplexed RxAvail signal.
* If data is available, read it.
*/
if ((portman_read_status(pm) & RXAVAIL) == 0)
return -1; /* No data. */
/* Set the Strobe signal to enable the Rx clocking circuitry. */
portman_write_command(pm, cmdout | STROBE); /* Write address+IE+Strobe. */
while ((portman_read_status(pm) & ESTB) == 0)
cpu_relax(); /* Wait for strobe echo. */
/* The first data bit (msb) is already sitting on the input line. */
midi_data = (portman_read_status(pm) & 128);
portman_write_data(pm, 1); /* Cause rising edge, which shifts data. */
/* Data bit 6. */
portman_write_data(pm, 0); /* Cause falling edge while data settles. */
midi_data |= (portman_read_status(pm) >> 1) & 64;
portman_write_data(pm, 1); /* Cause rising edge, which shifts data. */
/* Data bit 5. */
portman_write_data(pm, 0); /* Cause falling edge while data settles. */
midi_data |= (portman_read_status(pm) >> 2) & 32;
portman_write_data(pm, 1); /* Cause rising edge, which shifts data. */
/* Data bit 4. */
portman_write_data(pm, 0); /* Cause falling edge while data settles. */
midi_data |= (portman_read_status(pm) >> 3) & 16;
portman_write_data(pm, 1); /* Cause rising edge, which shifts data. */
/* Data bit 3. */
portman_write_data(pm, 0); /* Cause falling edge while data settles. */
midi_data |= (portman_read_status(pm) >> 4) & 8;
portman_write_data(pm, 1); /* Cause rising edge, which shifts data. */
/* Data bit 2. */
portman_write_data(pm, 0); /* Cause falling edge while data settles. */
midi_data |= (portman_read_status(pm) >> 5) & 4;
portman_write_data(pm, 1); /* Cause rising edge, which shifts data. */
/* Data bit 1. */
portman_write_data(pm, 0); /* Cause falling edge while data settles. */
midi_data |= (portman_read_status(pm) >> 6) & 2;
portman_write_data(pm, 1); /* Cause rising edge, which shifts data. */
/* Data bit 0. */
portman_write_data(pm, 0); /* Cause falling edge while data settles. */
midi_data |= (portman_read_status(pm) >> 7) & 1;
portman_write_data(pm, 1); /* Cause rising edge, which shifts data. */
portman_write_data(pm, 0); /* Return data clock low. */
/* De-assert Strobe and return data. */
portman_write_command(pm, cmdout); /* Output saved address+IE. */
/* Wait for strobe echo. */
while ((portman_read_status(pm) & ESTB) == ESTB)
cpu_relax();
return (midi_data & 255); /* Shift back and return value. */
}
/*
* Checks if any input data on the given channel is available
* Checks RxAvail
*/
static int portman_data_avail(struct portman *pm, int channel)
{
int command = INT_EN;
switch (channel) {
case 0:
command |= RXDATA0;
break;
case 1:
command |= RXDATA1;
break;
}
/* Write hardware (assumme STROBE=0) */
portman_write_command(pm, command);
/* Check multiplexed RxAvail signal */
if ((portman_read_status(pm) & RXAVAIL) == RXAVAIL)
return 1; /* Data available */
/* No Data available */
return 0;
}
/*
* Flushes any input
*/
static void portman_flush_input(struct portman *pm, unsigned char port)
{
/* Local variable for counting things */
unsigned int i = 0;
unsigned char command = 0;
switch (port) {
case 0:
command = RXDATA0;
break;
case 1:
command = RXDATA1;
break;
default:
snd_printk(KERN_WARNING
"portman_flush_input() Won't flush port %i\n",
port);
return;
}
/* Set address for specified channel in port and allow to settle. */
portman_write_command(pm, command);
/* Assert the Strobe and wait for echo back. */
portman_write_command(pm, command | STROBE);
/* Wait for ESTB */
while ((portman_read_status(pm) & ESTB) == 0)
cpu_relax();
/* Output clock cycles to the Rx circuitry. */
portman_write_data(pm, 0);
/* Flush 250 bits... */
for (i = 0; i < 250; i++) {
portman_write_data(pm, 1);
portman_write_data(pm, 0);
}
/* Deassert the Strobe signal of the port and wait for it to settle. */
portman_write_command(pm, command | INT_EN);
/* Wait for settling */
while ((portman_read_status(pm) & ESTB) == ESTB)
cpu_relax();
}
static int portman_probe(struct parport *p)
{
/* Initialize the parallel port data register. Will set Rx clocks
* low in case we happen to be addressing the Rx ports at this time.
*/
/* 1 */
parport_write_data(p, 0);
/* Initialize the parallel port command register, thus initializing
* hardware handshake lines to midi box:
*
* Strobe = 0
* Interrupt Enable = 0
*/
/* 2 */
parport_write_control(p, 0);
/* Check if Portman PC/P 2x4 is out there. */
/* 3 */
parport_write_control(p, RXDATA0); /* Write Strobe=0 to command reg. */
/* Check for ESTB to be clear */
/* 4 */
if ((parport_read_status(p) & ESTB) == ESTB)
return 1; /* CODE 1 - Strobe Failure. */
/* Set for RXDATA0 where no damage will be done. */
/* 5 */
parport_write_control(p, RXDATA0 + STROBE); /* Write Strobe=1 to command reg. */
/* 6 */
if ((parport_read_status(p) & ESTB) != ESTB)
return 1; /* CODE 1 - Strobe Failure. */
/* 7 */
parport_write_control(p, 0); /* Reset Strobe=0. */
/* Check if Tx circuitry is functioning properly. If initialized
* unit TxEmpty is false, send out char and see if if goes true.
*/
/* 8 */
parport_write_control(p, TXDATA0); /* Tx channel 0, strobe off. */
/* If PCP channel's TxEmpty is set (TxEmpty is read through the PP
* Status Register), then go write data. Else go back and wait.
*/
/* 9 */
if ((parport_read_status(p) & TXEMPTY) == 0)
return 2;
/* Return OK status. */
return 0;
}
static int portman_device_init(struct portman *pm)
{
portman_flush_input(pm, 0);
portman_flush_input(pm, 1);
return 0;
}
/*********************************************************************
* Rawmidi
*********************************************************************/
static int snd_portman_midi_open(struct snd_rawmidi_substream *substream)
{
return 0;
}
static int snd_portman_midi_close(struct snd_rawmidi_substream *substream)
{
return 0;
}
static void snd_portman_midi_input_trigger(struct snd_rawmidi_substream *substream,
int up)
{
struct portman *pm = substream->rmidi->private_data;
unsigned long flags;
spin_lock_irqsave(&pm->reg_lock, flags);
if (up)
pm->mode[substream->number] |= PORTMAN2X4_MODE_INPUT_TRIGGERED;
else
pm->mode[substream->number] &= ~PORTMAN2X4_MODE_INPUT_TRIGGERED;
spin_unlock_irqrestore(&pm->reg_lock, flags);
}
static void snd_portman_midi_output_trigger(struct snd_rawmidi_substream *substream,
int up)
{
struct portman *pm = substream->rmidi->private_data;
unsigned long flags;
unsigned char byte;
spin_lock_irqsave(&pm->reg_lock, flags);
if (up) {
while ((snd_rawmidi_transmit(substream, &byte, 1) == 1))
portman_write_midi(pm, substream->number, byte);
}
spin_unlock_irqrestore(&pm->reg_lock, flags);
}
static struct snd_rawmidi_ops snd_portman_midi_output = {
.open = snd_portman_midi_open,
.close = snd_portman_midi_close,
.trigger = snd_portman_midi_output_trigger,
};
static struct snd_rawmidi_ops snd_portman_midi_input = {
.open = snd_portman_midi_open,
.close = snd_portman_midi_close,
.trigger = snd_portman_midi_input_trigger,
};
/* Create and initialize the rawmidi component */
static int __devinit snd_portman_rawmidi_create(struct snd_card *card)
{
struct portman *pm = card->private_data;
struct snd_rawmidi *rmidi;
struct snd_rawmidi_substream *substream;
int err;
err = snd_rawmidi_new(card, CARD_NAME, 0,
PORTMAN_NUM_OUTPUT_PORTS,
PORTMAN_NUM_INPUT_PORTS,
&rmidi);
if (err < 0)
return err;
rmidi->private_data = pm;
strcpy(rmidi->name, CARD_NAME);
rmidi->info_flags = SNDRV_RAWMIDI_INFO_OUTPUT |
SNDRV_RAWMIDI_INFO_INPUT |
SNDRV_RAWMIDI_INFO_DUPLEX;
pm->rmidi = rmidi;
/* register rawmidi ops */
snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_OUTPUT,
&snd_portman_midi_output);
snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_INPUT,
&snd_portman_midi_input);
/* name substreams */
/* output */
list_for_each_entry(substream,
&rmidi->streams[SNDRV_RAWMIDI_STREAM_OUTPUT].substreams,
list) {
sprintf(substream->name,
"Portman2x4 %d", substream->number+1);
}
/* input */
list_for_each_entry(substream,
&rmidi->streams[SNDRV_RAWMIDI_STREAM_INPUT].substreams,
list) {
pm->midi_input[substream->number] = substream;
sprintf(substream->name,
"Portman2x4 %d", substream->number+1);
}
return err;
}
/*********************************************************************
* parport stuff
*********************************************************************/
static void snd_portman_interrupt(void *userdata)
{
unsigned char midivalue = 0;
struct portman *pm = ((struct snd_card*)userdata)->private_data;
spin_lock(&pm->reg_lock);
/* While any input data is waiting */
while ((portman_read_status(pm) & INT_REQ) == INT_REQ) {
/* If data available on channel 0,
read it and stuff it into the queue. */
if (portman_data_avail(pm, 0)) {
/* Read Midi */
midivalue = portman_read_midi(pm, 0);
/* put midi into queue... */
if (pm->mode[0] & PORTMAN2X4_MODE_INPUT_TRIGGERED)
snd_rawmidi_receive(pm->midi_input[0],
&midivalue, 1);
}
/* If data available on channel 1,
read it and stuff it into the queue. */
if (portman_data_avail(pm, 1)) {
/* Read Midi */
midivalue = portman_read_midi(pm, 1);
/* put midi into queue... */
if (pm->mode[1] & PORTMAN2X4_MODE_INPUT_TRIGGERED)
snd_rawmidi_receive(pm->midi_input[1],
&midivalue, 1);
}
}
spin_unlock(&pm->reg_lock);
}
static int __devinit snd_portman_probe_port(struct parport *p)
{
struct pardevice *pardev;
int res;
pardev = parport_register_device(p, DRIVER_NAME,
NULL, NULL, NULL,
0, NULL);
if (!pardev)
return -EIO;
if (parport_claim(pardev)) {
parport_unregister_device(pardev);
return -EIO;
}
res = portman_probe(p);
parport_release(pardev);
parport_unregister_device(pardev);
return res ? -EIO : 0;
}
static void __devinit snd_portman_attach(struct parport *p)
{
struct platform_device *device;
device = platform_device_alloc(PLATFORM_DRIVER, device_count);
if (!device)
return;
/* Temporary assignment to forward the parport */
platform_set_drvdata(device, p);
if (platform_device_add(device) < 0) {
platform_device_put(device);
return;
}
/* Since we dont get the return value of probe
* We need to check if device probing succeeded or not */
if (!platform_get_drvdata(device)) {
platform_device_unregister(device);
return;
}
/* register device in global table */
platform_devices[device_count] = device;
device_count++;
}
static void snd_portman_detach(struct parport *p)
{
/* nothing to do here */
}
static struct parport_driver portman_parport_driver = {
.name = "portman2x4",
.attach = snd_portman_attach,
.detach = snd_portman_detach
};
/*********************************************************************
* platform stuff
*********************************************************************/
static void snd_portman_card_private_free(struct snd_card *card)
{
struct portman *pm = card->private_data;
struct pardevice *pardev = pm->pardev;
if (pardev) {
if (pm->pardev_claimed)
parport_release(pardev);
parport_unregister_device(pardev);
}
portman_free(pm);
}
static int __devinit snd_portman_probe(struct platform_device *pdev)
{
struct pardevice *pardev;
struct parport *p;
int dev = pdev->id;
struct snd_card *card = NULL;
struct portman *pm = NULL;
int err;
p = platform_get_drvdata(pdev);
platform_set_drvdata(pdev, NULL);
if (dev >= SNDRV_CARDS)
return -ENODEV;
if (!enable[dev])
return -ENOENT;
if ((err = snd_portman_probe_port(p)) < 0)
return err;
err = snd_card_create(index[dev], id[dev], THIS_MODULE, 0, &card);
if (err < 0) {
snd_printd("Cannot create card\n");
return err;
}
strcpy(card->driver, DRIVER_NAME);
strcpy(card->shortname, CARD_NAME);
sprintf(card->longname, "%s at 0x%lx, irq %i",
card->shortname, p->base, p->irq);
pardev = parport_register_device(p, /* port */
DRIVER_NAME, /* name */
NULL, /* preempt */
NULL, /* wakeup */
snd_portman_interrupt, /* ISR */
PARPORT_DEV_EXCL, /* flags */
(void *)card); /* private */
if (pardev == NULL) {
snd_printd("Cannot register pardevice\n");
err = -EIO;
goto __err;
}
if ((err = portman_create(card, pardev, &pm)) < 0) {
snd_printd("Cannot create main component\n");
parport_unregister_device(pardev);
goto __err;
}
card->private_data = pm;
card->private_free = snd_portman_card_private_free;
if ((err = snd_portman_rawmidi_create(card)) < 0) {
snd_printd("Creating Rawmidi component failed\n");
goto __err;
}
/* claim parport */
if (parport_claim(pardev)) {
snd_printd("Cannot claim parport 0x%lx\n", pardev->port->base);
err = -EIO;
goto __err;
}
pm->pardev_claimed = 1;
/* init device */
if ((err = portman_device_init(pm)) < 0)
goto __err;
platform_set_drvdata(pdev, card);
snd_card_set_dev(card, &pdev->dev);
/* At this point card will be usable */
if ((err = snd_card_register(card)) < 0) {
snd_printd("Cannot register card\n");
goto __err;
}
snd_printk(KERN_INFO "Portman 2x4 on 0x%lx\n", p->base);
return 0;
__err:
snd_card_free(card);
return err;
}
static int __devexit snd_portman_remove(struct platform_device *pdev)
{
struct snd_card *card = platform_get_drvdata(pdev);
if (card)
snd_card_free(card);
return 0;
}
static struct platform_driver snd_portman_driver = {
.probe = snd_portman_probe,
.remove = __devexit_p(snd_portman_remove),
.driver = {
.name = PLATFORM_DRIVER
}
};
/*********************************************************************
* module init stuff
*********************************************************************/
static void snd_portman_unregister_all(void)
{
int i;
for (i = 0; i < SNDRV_CARDS; ++i) {
if (platform_devices[i]) {
platform_device_unregister(platform_devices[i]);
platform_devices[i] = NULL;
}
}
platform_driver_unregister(&snd_portman_driver);
parport_unregister_driver(&portman_parport_driver);
}
static int __init snd_portman_module_init(void)
{
int err;
if ((err = platform_driver_register(&snd_portman_driver)) < 0)
return err;
if (parport_register_driver(&portman_parport_driver) != 0) {
platform_driver_unregister(&snd_portman_driver);
return -EIO;
}
if (device_count == 0) {
snd_portman_unregister_all();
return -ENODEV;
}
return 0;
}
static void __exit snd_portman_module_exit(void)
{
snd_portman_unregister_all();
}
module_init(snd_portman_module_init);
module_exit(snd_portman_module_exit);