acrn-kernel/drivers/misc/habanalabs/common/firmware_if.c

3022 lines
80 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright 2016-2022 HabanaLabs, Ltd.
* All Rights Reserved.
*/
#include "habanalabs.h"
#include "../include/common/hl_boot_if.h"
#include <linux/firmware.h>
#include <linux/crc32.h>
#include <linux/slab.h>
#include <linux/ctype.h>
#define FW_FILE_MAX_SIZE 0x1400000 /* maximum size of 20MB */
static char *extract_fw_ver_from_str(const char *fw_str)
{
char *str, *fw_ver, *whitespace;
u32 ver_offset;
fw_ver = kmalloc(VERSION_MAX_LEN, GFP_KERNEL);
if (!fw_ver)
return NULL;
str = strnstr(fw_str, "fw-", VERSION_MAX_LEN);
if (!str)
goto free_fw_ver;
/* Skip the fw- part */
str += 3;
ver_offset = str - fw_str;
/* Copy until the next whitespace */
whitespace = strnstr(str, " ", VERSION_MAX_LEN - ver_offset);
if (!whitespace)
goto free_fw_ver;
strscpy(fw_ver, str, whitespace - str + 1);
return fw_ver;
free_fw_ver:
kfree(fw_ver);
return NULL;
}
static int extract_fw_sub_versions(struct hl_device *hdev, char *preboot_ver)
{
char major[8], minor[8], *first_dot, *second_dot;
int rc;
first_dot = strnstr(preboot_ver, ".", 10);
if (first_dot) {
strscpy(major, preboot_ver, first_dot - preboot_ver + 1);
rc = kstrtou32(major, 10, &hdev->fw_major_version);
} else {
rc = -EINVAL;
}
if (rc) {
dev_err(hdev->dev, "Error %d parsing preboot major version\n", rc);
goto out;
}
/* skip the first dot */
first_dot++;
second_dot = strnstr(first_dot, ".", 10);
if (second_dot) {
strscpy(minor, first_dot, second_dot - first_dot + 1);
rc = kstrtou32(minor, 10, &hdev->fw_minor_version);
} else {
rc = -EINVAL;
}
if (rc)
dev_err(hdev->dev, "Error %d parsing preboot minor version\n", rc);
out:
kfree(preboot_ver);
return rc;
}
static int hl_request_fw(struct hl_device *hdev,
const struct firmware **firmware_p,
const char *fw_name)
{
size_t fw_size;
int rc;
rc = request_firmware(firmware_p, fw_name, hdev->dev);
if (rc) {
dev_err(hdev->dev, "Firmware file %s is not found! (error %d)\n",
fw_name, rc);
goto out;
}
fw_size = (*firmware_p)->size;
if ((fw_size % 4) != 0) {
dev_err(hdev->dev, "Illegal %s firmware size %zu\n",
fw_name, fw_size);
rc = -EINVAL;
goto release_fw;
}
dev_dbg(hdev->dev, "%s firmware size == %zu\n", fw_name, fw_size);
if (fw_size > FW_FILE_MAX_SIZE) {
dev_err(hdev->dev,
"FW file size %zu exceeds maximum of %u bytes\n",
fw_size, FW_FILE_MAX_SIZE);
rc = -EINVAL;
goto release_fw;
}
return 0;
release_fw:
release_firmware(*firmware_p);
out:
return rc;
}
/**
* hl_release_firmware() - release FW
*
* @fw: fw descriptor
*
* note: this inline function added to serve as a comprehensive mirror for the
* hl_request_fw function.
*/
static inline void hl_release_firmware(const struct firmware *fw)
{
release_firmware(fw);
}
/**
* hl_fw_copy_fw_to_device() - copy FW to device
*
* @hdev: pointer to hl_device structure.
* @fw: fw descriptor
* @dst: IO memory mapped address space to copy firmware to
* @src_offset: offset in src FW to copy from
* @size: amount of bytes to copy (0 to copy the whole binary)
*
* actual copy of FW binary data to device, shared by static and dynamic loaders
*/
static int hl_fw_copy_fw_to_device(struct hl_device *hdev,
const struct firmware *fw, void __iomem *dst,
u32 src_offset, u32 size)
{
const void *fw_data;
/* size 0 indicates to copy the whole file */
if (!size)
size = fw->size;
if (src_offset + size > fw->size) {
dev_err(hdev->dev,
"size to copy(%u) and offset(%u) are invalid\n",
size, src_offset);
return -EINVAL;
}
fw_data = (const void *) fw->data;
memcpy_toio(dst, fw_data + src_offset, size);
return 0;
}
/**
* hl_fw_copy_msg_to_device() - copy message to device
*
* @hdev: pointer to hl_device structure.
* @msg: message
* @dst: IO memory mapped address space to copy firmware to
* @src_offset: offset in src message to copy from
* @size: amount of bytes to copy (0 to copy the whole binary)
*
* actual copy of message data to device.
*/
static int hl_fw_copy_msg_to_device(struct hl_device *hdev,
struct lkd_msg_comms *msg, void __iomem *dst,
u32 src_offset, u32 size)
{
void *msg_data;
/* size 0 indicates to copy the whole file */
if (!size)
size = sizeof(struct lkd_msg_comms);
if (src_offset + size > sizeof(struct lkd_msg_comms)) {
dev_err(hdev->dev,
"size to copy(%u) and offset(%u) are invalid\n",
size, src_offset);
return -EINVAL;
}
msg_data = (void *) msg;
memcpy_toio(dst, msg_data + src_offset, size);
return 0;
}
/**
* hl_fw_load_fw_to_device() - Load F/W code to device's memory.
*
* @hdev: pointer to hl_device structure.
* @fw_name: the firmware image name
* @dst: IO memory mapped address space to copy firmware to
* @src_offset: offset in src FW to copy from
* @size: amount of bytes to copy (0 to copy the whole binary)
*
* Copy fw code from firmware file to device memory.
*
* Return: 0 on success, non-zero for failure.
*/
int hl_fw_load_fw_to_device(struct hl_device *hdev, const char *fw_name,
void __iomem *dst, u32 src_offset, u32 size)
{
const struct firmware *fw;
int rc;
rc = hl_request_fw(hdev, &fw, fw_name);
if (rc)
return rc;
rc = hl_fw_copy_fw_to_device(hdev, fw, dst, src_offset, size);
hl_release_firmware(fw);
return rc;
}
int hl_fw_send_pci_access_msg(struct hl_device *hdev, u32 opcode, u64 value)
{
struct cpucp_packet pkt = {};
pkt.ctl = cpu_to_le32(opcode << CPUCP_PKT_CTL_OPCODE_SHIFT);
pkt.value = cpu_to_le64(value);
return hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 0, NULL);
}
int hl_fw_send_cpu_message(struct hl_device *hdev, u32 hw_queue_id, u32 *msg,
u16 len, u32 timeout, u64 *result)
{
struct hl_hw_queue *queue = &hdev->kernel_queues[hw_queue_id];
struct asic_fixed_properties *prop = &hdev->asic_prop;
struct cpucp_packet *pkt;
dma_addr_t pkt_dma_addr;
struct hl_bd *sent_bd;
u32 tmp, expected_ack_val, pi, opcode;
int rc;
pkt = hl_cpu_accessible_dma_pool_alloc(hdev, len, &pkt_dma_addr);
if (!pkt) {
dev_err(hdev->dev,
"Failed to allocate DMA memory for packet to CPU\n");
return -ENOMEM;
}
memcpy(pkt, msg, len);
mutex_lock(&hdev->send_cpu_message_lock);
/* CPU-CP messages can be sent during soft-reset */
if (hdev->disabled && !hdev->reset_info.in_compute_reset) {
rc = 0;
goto out;
}
if (hdev->device_cpu_disabled) {
rc = -EIO;
goto out;
}
/* set fence to a non valid value */
pkt->fence = cpu_to_le32(UINT_MAX);
pi = queue->pi;
/*
* The CPU queue is a synchronous queue with an effective depth of
* a single entry (although it is allocated with room for multiple
* entries). We lock on it using 'send_cpu_message_lock' which
* serializes accesses to the CPU queue.
* Which means that we don't need to lock the access to the entire H/W
* queues module when submitting a JOB to the CPU queue.
*/
hl_hw_queue_submit_bd(hdev, queue, hl_queue_inc_ptr(queue->pi), len, pkt_dma_addr);
if (prop->fw_app_cpu_boot_dev_sts0 & CPU_BOOT_DEV_STS0_PKT_PI_ACK_EN)
expected_ack_val = queue->pi;
else
expected_ack_val = CPUCP_PACKET_FENCE_VAL;
rc = hl_poll_timeout_memory(hdev, &pkt->fence, tmp,
(tmp == expected_ack_val), 1000,
timeout, true);
hl_hw_queue_inc_ci_kernel(hdev, hw_queue_id);
if (rc == -ETIMEDOUT) {
/* If FW performed reset just before sending it a packet, we will get a timeout.
* This is expected behavior, hence no need for error message.
*/
if (!hl_device_operational(hdev, NULL) && !hdev->reset_info.in_compute_reset)
dev_dbg(hdev->dev, "Device CPU packet timeout (0x%x) due to FW reset\n",
tmp);
else
dev_err(hdev->dev, "Device CPU packet timeout (0x%x)\n", tmp);
hdev->device_cpu_disabled = true;
goto out;
}
tmp = le32_to_cpu(pkt->ctl);
rc = (tmp & CPUCP_PKT_CTL_RC_MASK) >> CPUCP_PKT_CTL_RC_SHIFT;
if (rc) {
opcode = (tmp & CPUCP_PKT_CTL_OPCODE_MASK) >> CPUCP_PKT_CTL_OPCODE_SHIFT;
if (!prop->supports_advanced_cpucp_rc) {
dev_dbg(hdev->dev, "F/W ERROR %d for CPU packet %d\n", rc, opcode);
goto scrub_descriptor;
}
switch (rc) {
case cpucp_packet_invalid:
dev_err(hdev->dev,
"CPU packet %d is not supported by F/W\n", opcode);
break;
case cpucp_packet_fault:
dev_err(hdev->dev,
"F/W failed processing CPU packet %d\n", opcode);
break;
case cpucp_packet_invalid_pkt:
dev_dbg(hdev->dev,
"CPU packet %d is not supported by F/W\n", opcode);
break;
case cpucp_packet_invalid_params:
dev_err(hdev->dev,
"F/W reports invalid parameters for CPU packet %d\n", opcode);
break;
default:
dev_err(hdev->dev,
"Unknown F/W ERROR %d for CPU packet %d\n", rc, opcode);
}
/* propagate the return code from the f/w to the callers who want to check it */
if (result)
*result = rc;
rc = -EIO;
} else if (result) {
*result = le64_to_cpu(pkt->result);
}
scrub_descriptor:
/* Scrub previous buffer descriptor 'ctl' field which contains the
* previous PI value written during packet submission.
* We must do this or else F/W can read an old value upon queue wraparound.
*/
sent_bd = queue->kernel_address;
sent_bd += hl_pi_2_offset(pi);
sent_bd->ctl = cpu_to_le32(UINT_MAX);
out:
mutex_unlock(&hdev->send_cpu_message_lock);
hl_cpu_accessible_dma_pool_free(hdev, len, pkt);
return rc;
}
int hl_fw_unmask_irq(struct hl_device *hdev, u16 event_type)
{
struct cpucp_packet pkt;
u64 result;
int rc;
memset(&pkt, 0, sizeof(pkt));
pkt.ctl = cpu_to_le32(CPUCP_PACKET_UNMASK_RAZWI_IRQ <<
CPUCP_PKT_CTL_OPCODE_SHIFT);
pkt.value = cpu_to_le64(event_type);
rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
0, &result);
if (rc)
dev_err(hdev->dev, "failed to unmask RAZWI IRQ %d", event_type);
return rc;
}
int hl_fw_unmask_irq_arr(struct hl_device *hdev, const u32 *irq_arr,
size_t irq_arr_size)
{
struct cpucp_unmask_irq_arr_packet *pkt;
size_t total_pkt_size;
u64 result;
int rc;
total_pkt_size = sizeof(struct cpucp_unmask_irq_arr_packet) +
irq_arr_size;
/* data should be aligned to 8 bytes in order to CPU-CP to copy it */
total_pkt_size = (total_pkt_size + 0x7) & ~0x7;
/* total_pkt_size is casted to u16 later on */
if (total_pkt_size > USHRT_MAX) {
dev_err(hdev->dev, "too many elements in IRQ array\n");
return -EINVAL;
}
pkt = kzalloc(total_pkt_size, GFP_KERNEL);
if (!pkt)
return -ENOMEM;
pkt->length = cpu_to_le32(irq_arr_size / sizeof(irq_arr[0]));
memcpy(&pkt->irqs, irq_arr, irq_arr_size);
pkt->cpucp_pkt.ctl = cpu_to_le32(CPUCP_PACKET_UNMASK_RAZWI_IRQ_ARRAY <<
CPUCP_PKT_CTL_OPCODE_SHIFT);
rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) pkt,
total_pkt_size, 0, &result);
if (rc)
dev_err(hdev->dev, "failed to unmask IRQ array\n");
kfree(pkt);
return rc;
}
int hl_fw_test_cpu_queue(struct hl_device *hdev)
{
struct cpucp_packet test_pkt = {};
u64 result;
int rc;
test_pkt.ctl = cpu_to_le32(CPUCP_PACKET_TEST <<
CPUCP_PKT_CTL_OPCODE_SHIFT);
test_pkt.value = cpu_to_le64(CPUCP_PACKET_FENCE_VAL);
rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &test_pkt,
sizeof(test_pkt), 0, &result);
if (!rc) {
if (result != CPUCP_PACKET_FENCE_VAL)
dev_err(hdev->dev,
"CPU queue test failed (%#08llx)\n", result);
} else {
dev_err(hdev->dev, "CPU queue test failed, error %d\n", rc);
}
return rc;
}
void *hl_fw_cpu_accessible_dma_pool_alloc(struct hl_device *hdev, size_t size,
dma_addr_t *dma_handle)
{
u64 kernel_addr;
kernel_addr = gen_pool_alloc(hdev->cpu_accessible_dma_pool, size);
*dma_handle = hdev->cpu_accessible_dma_address +
(kernel_addr - (u64) (uintptr_t) hdev->cpu_accessible_dma_mem);
return (void *) (uintptr_t) kernel_addr;
}
void hl_fw_cpu_accessible_dma_pool_free(struct hl_device *hdev, size_t size,
void *vaddr)
{
gen_pool_free(hdev->cpu_accessible_dma_pool, (u64) (uintptr_t) vaddr,
size);
}
int hl_fw_send_device_activity(struct hl_device *hdev, bool open)
{
struct cpucp_packet pkt;
int rc;
memset(&pkt, 0, sizeof(pkt));
pkt.ctl = cpu_to_le32(CPUCP_PACKET_ACTIVE_STATUS_SET << CPUCP_PKT_CTL_OPCODE_SHIFT);
pkt.value = cpu_to_le64(open);
rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 0, NULL);
if (rc)
dev_err(hdev->dev, "failed to send device activity msg(%u)\n", open);
return rc;
}
int hl_fw_send_heartbeat(struct hl_device *hdev)
{
struct cpucp_packet hb_pkt;
u64 result;
int rc;
memset(&hb_pkt, 0, sizeof(hb_pkt));
hb_pkt.ctl = cpu_to_le32(CPUCP_PACKET_TEST <<
CPUCP_PKT_CTL_OPCODE_SHIFT);
hb_pkt.value = cpu_to_le64(CPUCP_PACKET_FENCE_VAL);
rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &hb_pkt,
sizeof(hb_pkt), 0, &result);
if ((rc) || (result != CPUCP_PACKET_FENCE_VAL))
return -EIO;
if (le32_to_cpu(hb_pkt.status_mask) &
CPUCP_PKT_HB_STATUS_EQ_FAULT_MASK) {
dev_warn(hdev->dev, "FW reported EQ fault during heartbeat\n");
rc = -EIO;
}
return rc;
}
static bool fw_report_boot_dev0(struct hl_device *hdev, u32 err_val,
u32 sts_val)
{
bool err_exists = false;
if (!(err_val & CPU_BOOT_ERR0_ENABLED))
return false;
if (err_val & CPU_BOOT_ERR0_DRAM_INIT_FAIL) {
dev_err(hdev->dev,
"Device boot error - DRAM initialization failed\n");
err_exists = true;
}
if (err_val & CPU_BOOT_ERR0_FIT_CORRUPTED) {
dev_err(hdev->dev, "Device boot error - FIT image corrupted\n");
err_exists = true;
}
if (err_val & CPU_BOOT_ERR0_TS_INIT_FAIL) {
dev_err(hdev->dev,
"Device boot error - Thermal Sensor initialization failed\n");
err_exists = true;
}
if (err_val & CPU_BOOT_ERR0_BMC_WAIT_SKIPPED) {
if (hdev->bmc_enable) {
dev_err(hdev->dev,
"Device boot error - Skipped waiting for BMC\n");
err_exists = true;
} else {
dev_info(hdev->dev,
"Device boot message - Skipped waiting for BMC\n");
/* This is an info so we don't want it to disable the
* device
*/
err_val &= ~CPU_BOOT_ERR0_BMC_WAIT_SKIPPED;
}
}
if (err_val & CPU_BOOT_ERR0_NIC_DATA_NOT_RDY) {
dev_err(hdev->dev,
"Device boot error - Serdes data from BMC not available\n");
err_exists = true;
}
if (err_val & CPU_BOOT_ERR0_NIC_FW_FAIL) {
dev_err(hdev->dev,
"Device boot error - NIC F/W initialization failed\n");
err_exists = true;
}
if (err_val & CPU_BOOT_ERR0_SECURITY_NOT_RDY) {
dev_err(hdev->dev,
"Device boot warning - security not ready\n");
err_exists = true;
}
if (err_val & CPU_BOOT_ERR0_SECURITY_FAIL) {
dev_err(hdev->dev, "Device boot error - security failure\n");
err_exists = true;
}
if (err_val & CPU_BOOT_ERR0_EFUSE_FAIL) {
dev_err(hdev->dev, "Device boot error - eFuse failure\n");
err_exists = true;
}
if (err_val & CPU_BOOT_ERR0_SEC_IMG_VER_FAIL) {
dev_err(hdev->dev, "Device boot error - Failed to load preboot secondary image\n");
err_exists = true;
}
if (err_val & CPU_BOOT_ERR0_PLL_FAIL) {
dev_err(hdev->dev, "Device boot error - PLL failure\n");
err_exists = true;
}
if (err_val & CPU_BOOT_ERR0_DEVICE_UNUSABLE_FAIL) {
/* Ignore this bit, don't prevent driver loading */
dev_dbg(hdev->dev, "device unusable status is set\n");
err_val &= ~CPU_BOOT_ERR0_DEVICE_UNUSABLE_FAIL;
}
if (err_val & CPU_BOOT_ERR0_BINNING_FAIL) {
dev_err(hdev->dev, "Device boot error - binning failure\n");
err_exists = true;
}
if (sts_val & CPU_BOOT_DEV_STS0_ENABLED)
dev_dbg(hdev->dev, "Device status0 %#x\n", sts_val);
/* All warnings should go here in order not to reach the unknown error validation */
if (err_val & CPU_BOOT_ERR0_EEPROM_FAIL) {
dev_warn(hdev->dev,
"Device boot warning - EEPROM failure detected, default settings applied\n");
/* This is a warning so we don't want it to disable the
* device
*/
err_val &= ~CPU_BOOT_ERR0_EEPROM_FAIL;
}
if (err_val & CPU_BOOT_ERR0_DRAM_SKIPPED) {
dev_warn(hdev->dev,
"Device boot warning - Skipped DRAM initialization\n");
/* This is a warning so we don't want it to disable the
* device
*/
err_val &= ~CPU_BOOT_ERR0_DRAM_SKIPPED;
}
if (err_val & CPU_BOOT_ERR0_PRI_IMG_VER_FAIL) {
dev_warn(hdev->dev,
"Device boot warning - Failed to load preboot primary image\n");
/* This is a warning so we don't want it to disable the
* device as we have a secondary preboot image
*/
err_val &= ~CPU_BOOT_ERR0_PRI_IMG_VER_FAIL;
}
if (err_val & CPU_BOOT_ERR0_TPM_FAIL) {
dev_warn(hdev->dev,
"Device boot warning - TPM failure\n");
/* This is a warning so we don't want it to disable the
* device
*/
err_val &= ~CPU_BOOT_ERR0_TPM_FAIL;
}
if (!err_exists && (err_val & ~CPU_BOOT_ERR0_ENABLED)) {
dev_err(hdev->dev,
"Device boot error - unknown ERR0 error 0x%08x\n", err_val);
err_exists = true;
}
/* return error only if it's in the predefined mask */
if (err_exists && ((err_val & ~CPU_BOOT_ERR0_ENABLED) &
lower_32_bits(hdev->boot_error_status_mask)))
return true;
return false;
}
/* placeholder for ERR1 as no errors defined there yet */
static bool fw_report_boot_dev1(struct hl_device *hdev, u32 err_val,
u32 sts_val)
{
/*
* keep this variable to preserve the logic of the function.
* this way it would require less modifications when error will be
* added to DEV_ERR1
*/
bool err_exists = false;
if (!(err_val & CPU_BOOT_ERR1_ENABLED))
return false;
if (sts_val & CPU_BOOT_DEV_STS1_ENABLED)
dev_dbg(hdev->dev, "Device status1 %#x\n", sts_val);
if (!err_exists && (err_val & ~CPU_BOOT_ERR1_ENABLED)) {
dev_err(hdev->dev,
"Device boot error - unknown ERR1 error 0x%08x\n",
err_val);
err_exists = true;
}
/* return error only if it's in the predefined mask */
if (err_exists && ((err_val & ~CPU_BOOT_ERR1_ENABLED) &
upper_32_bits(hdev->boot_error_status_mask)))
return true;
return false;
}
static int fw_read_errors(struct hl_device *hdev, u32 boot_err0_reg,
u32 boot_err1_reg, u32 cpu_boot_dev_status0_reg,
u32 cpu_boot_dev_status1_reg)
{
u32 err_val, status_val;
bool err_exists = false;
/* Some of the firmware status codes are deprecated in newer f/w
* versions. In those versions, the errors are reported
* in different registers. Therefore, we need to check those
* registers and print the exact errors. Moreover, there
* may be multiple errors, so we need to report on each error
* separately. Some of the error codes might indicate a state
* that is not an error per-se, but it is an error in production
* environment
*/
err_val = RREG32(boot_err0_reg);
status_val = RREG32(cpu_boot_dev_status0_reg);
err_exists = fw_report_boot_dev0(hdev, err_val, status_val);
err_val = RREG32(boot_err1_reg);
status_val = RREG32(cpu_boot_dev_status1_reg);
err_exists |= fw_report_boot_dev1(hdev, err_val, status_val);
if (err_exists)
return -EIO;
return 0;
}
int hl_fw_cpucp_info_get(struct hl_device *hdev,
u32 sts_boot_dev_sts0_reg,
u32 sts_boot_dev_sts1_reg, u32 boot_err0_reg,
u32 boot_err1_reg)
{
struct asic_fixed_properties *prop = &hdev->asic_prop;
struct cpucp_packet pkt = {};
dma_addr_t cpucp_info_dma_addr;
void *cpucp_info_cpu_addr;
char *kernel_ver;
u64 result;
int rc;
cpucp_info_cpu_addr = hl_cpu_accessible_dma_pool_alloc(hdev, sizeof(struct cpucp_info),
&cpucp_info_dma_addr);
if (!cpucp_info_cpu_addr) {
dev_err(hdev->dev,
"Failed to allocate DMA memory for CPU-CP info packet\n");
return -ENOMEM;
}
memset(cpucp_info_cpu_addr, 0, sizeof(struct cpucp_info));
pkt.ctl = cpu_to_le32(CPUCP_PACKET_INFO_GET <<
CPUCP_PKT_CTL_OPCODE_SHIFT);
pkt.addr = cpu_to_le64(cpucp_info_dma_addr);
pkt.data_max_size = cpu_to_le32(sizeof(struct cpucp_info));
rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
HL_CPUCP_INFO_TIMEOUT_USEC, &result);
if (rc) {
dev_err(hdev->dev,
"Failed to handle CPU-CP info pkt, error %d\n", rc);
goto out;
}
rc = fw_read_errors(hdev, boot_err0_reg, boot_err1_reg,
sts_boot_dev_sts0_reg, sts_boot_dev_sts1_reg);
if (rc) {
dev_err(hdev->dev, "Errors in device boot\n");
goto out;
}
memcpy(&prop->cpucp_info, cpucp_info_cpu_addr,
sizeof(prop->cpucp_info));
rc = hl_build_hwmon_channel_info(hdev, prop->cpucp_info.sensors);
if (rc) {
dev_err(hdev->dev,
"Failed to build hwmon channel info, error %d\n", rc);
rc = -EFAULT;
goto out;
}
kernel_ver = extract_fw_ver_from_str(prop->cpucp_info.kernel_version);
if (kernel_ver) {
dev_info(hdev->dev, "Linux version %s", kernel_ver);
kfree(kernel_ver);
}
/* assume EQ code doesn't need to check eqe index */
hdev->event_queue.check_eqe_index = false;
/* Read FW application security bits again */
if (prop->fw_cpu_boot_dev_sts0_valid) {
prop->fw_app_cpu_boot_dev_sts0 = RREG32(sts_boot_dev_sts0_reg);
if (prop->fw_app_cpu_boot_dev_sts0 &
CPU_BOOT_DEV_STS0_EQ_INDEX_EN)
hdev->event_queue.check_eqe_index = true;
}
if (prop->fw_cpu_boot_dev_sts1_valid)
prop->fw_app_cpu_boot_dev_sts1 = RREG32(sts_boot_dev_sts1_reg);
out:
hl_cpu_accessible_dma_pool_free(hdev, sizeof(struct cpucp_info), cpucp_info_cpu_addr);
return rc;
}
static int hl_fw_send_msi_info_msg(struct hl_device *hdev)
{
struct cpucp_array_data_packet *pkt;
size_t total_pkt_size, data_size;
u64 result;
int rc;
/* skip sending this info for unsupported ASICs */
if (!hdev->asic_funcs->get_msi_info)
return 0;
data_size = CPUCP_NUM_OF_MSI_TYPES * sizeof(u32);
total_pkt_size = sizeof(struct cpucp_array_data_packet) + data_size;
/* data should be aligned to 8 bytes in order to CPU-CP to copy it */
total_pkt_size = (total_pkt_size + 0x7) & ~0x7;
/* total_pkt_size is casted to u16 later on */
if (total_pkt_size > USHRT_MAX) {
dev_err(hdev->dev, "CPUCP array data is too big\n");
return -EINVAL;
}
pkt = kzalloc(total_pkt_size, GFP_KERNEL);
if (!pkt)
return -ENOMEM;
pkt->length = cpu_to_le32(CPUCP_NUM_OF_MSI_TYPES);
memset((void *) &pkt->data, 0xFF, data_size);
hdev->asic_funcs->get_msi_info(pkt->data);
pkt->cpucp_pkt.ctl = cpu_to_le32(CPUCP_PACKET_MSI_INFO_SET <<
CPUCP_PKT_CTL_OPCODE_SHIFT);
rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *)pkt,
total_pkt_size, 0, &result);
/*
* in case packet result is invalid it means that FW does not support
* this feature and will use default/hard coded MSI values. no reason
* to stop the boot
*/
if (rc && result == cpucp_packet_invalid)
rc = 0;
if (rc)
dev_err(hdev->dev, "failed to send CPUCP array data\n");
kfree(pkt);
return rc;
}
int hl_fw_cpucp_handshake(struct hl_device *hdev,
u32 sts_boot_dev_sts0_reg,
u32 sts_boot_dev_sts1_reg, u32 boot_err0_reg,
u32 boot_err1_reg)
{
int rc;
rc = hl_fw_cpucp_info_get(hdev, sts_boot_dev_sts0_reg,
sts_boot_dev_sts1_reg, boot_err0_reg,
boot_err1_reg);
if (rc)
return rc;
return hl_fw_send_msi_info_msg(hdev);
}
int hl_fw_get_eeprom_data(struct hl_device *hdev, void *data, size_t max_size)
{
struct cpucp_packet pkt = {};
void *eeprom_info_cpu_addr;
dma_addr_t eeprom_info_dma_addr;
u64 result;
int rc;
eeprom_info_cpu_addr = hl_cpu_accessible_dma_pool_alloc(hdev, max_size,
&eeprom_info_dma_addr);
if (!eeprom_info_cpu_addr) {
dev_err(hdev->dev,
"Failed to allocate DMA memory for CPU-CP EEPROM packet\n");
return -ENOMEM;
}
memset(eeprom_info_cpu_addr, 0, max_size);
pkt.ctl = cpu_to_le32(CPUCP_PACKET_EEPROM_DATA_GET <<
CPUCP_PKT_CTL_OPCODE_SHIFT);
pkt.addr = cpu_to_le64(eeprom_info_dma_addr);
pkt.data_max_size = cpu_to_le32(max_size);
rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
HL_CPUCP_EEPROM_TIMEOUT_USEC, &result);
if (rc) {
dev_err(hdev->dev,
"Failed to handle CPU-CP EEPROM packet, error %d\n",
rc);
goto out;
}
/* result contains the actual size */
memcpy(data, eeprom_info_cpu_addr, min((size_t)result, max_size));
out:
hl_cpu_accessible_dma_pool_free(hdev, max_size, eeprom_info_cpu_addr);
return rc;
}
int hl_fw_get_monitor_dump(struct hl_device *hdev, void *data)
{
struct cpucp_monitor_dump *mon_dump_cpu_addr;
dma_addr_t mon_dump_dma_addr;
struct cpucp_packet pkt = {};
size_t data_size;
__le32 *src_ptr;
u32 *dst_ptr;
u64 result;
int i, rc;
data_size = sizeof(struct cpucp_monitor_dump);
mon_dump_cpu_addr = hl_cpu_accessible_dma_pool_alloc(hdev, data_size, &mon_dump_dma_addr);
if (!mon_dump_cpu_addr) {
dev_err(hdev->dev,
"Failed to allocate DMA memory for CPU-CP monitor-dump packet\n");
return -ENOMEM;
}
memset(mon_dump_cpu_addr, 0, data_size);
pkt.ctl = cpu_to_le32(CPUCP_PACKET_MONITOR_DUMP_GET << CPUCP_PKT_CTL_OPCODE_SHIFT);
pkt.addr = cpu_to_le64(mon_dump_dma_addr);
pkt.data_max_size = cpu_to_le32(data_size);
rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
HL_CPUCP_MON_DUMP_TIMEOUT_USEC, &result);
if (rc) {
dev_err(hdev->dev, "Failed to handle CPU-CP monitor-dump packet, error %d\n", rc);
goto out;
}
/* result contains the actual size */
src_ptr = (__le32 *) mon_dump_cpu_addr;
dst_ptr = data;
for (i = 0; i < (data_size / sizeof(u32)); i++) {
*dst_ptr = le32_to_cpu(*src_ptr);
src_ptr++;
dst_ptr++;
}
out:
hl_cpu_accessible_dma_pool_free(hdev, data_size, mon_dump_cpu_addr);
return rc;
}
int hl_fw_cpucp_pci_counters_get(struct hl_device *hdev,
struct hl_info_pci_counters *counters)
{
struct cpucp_packet pkt = {};
u64 result;
int rc;
pkt.ctl = cpu_to_le32(CPUCP_PACKET_PCIE_THROUGHPUT_GET <<
CPUCP_PKT_CTL_OPCODE_SHIFT);
/* Fetch PCI rx counter */
pkt.index = cpu_to_le32(cpucp_pcie_throughput_rx);
rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
HL_CPUCP_INFO_TIMEOUT_USEC, &result);
if (rc) {
dev_err(hdev->dev,
"Failed to handle CPU-CP PCI info pkt, error %d\n", rc);
return rc;
}
counters->rx_throughput = result;
memset(&pkt, 0, sizeof(pkt));
pkt.ctl = cpu_to_le32(CPUCP_PACKET_PCIE_THROUGHPUT_GET <<
CPUCP_PKT_CTL_OPCODE_SHIFT);
/* Fetch PCI tx counter */
pkt.index = cpu_to_le32(cpucp_pcie_throughput_tx);
rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
HL_CPUCP_INFO_TIMEOUT_USEC, &result);
if (rc) {
dev_err(hdev->dev,
"Failed to handle CPU-CP PCI info pkt, error %d\n", rc);
return rc;
}
counters->tx_throughput = result;
/* Fetch PCI replay counter */
memset(&pkt, 0, sizeof(pkt));
pkt.ctl = cpu_to_le32(CPUCP_PACKET_PCIE_REPLAY_CNT_GET <<
CPUCP_PKT_CTL_OPCODE_SHIFT);
rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
HL_CPUCP_INFO_TIMEOUT_USEC, &result);
if (rc) {
dev_err(hdev->dev,
"Failed to handle CPU-CP PCI info pkt, error %d\n", rc);
return rc;
}
counters->replay_cnt = (u32) result;
return rc;
}
int hl_fw_cpucp_total_energy_get(struct hl_device *hdev, u64 *total_energy)
{
struct cpucp_packet pkt = {};
u64 result;
int rc;
pkt.ctl = cpu_to_le32(CPUCP_PACKET_TOTAL_ENERGY_GET <<
CPUCP_PKT_CTL_OPCODE_SHIFT);
rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
HL_CPUCP_INFO_TIMEOUT_USEC, &result);
if (rc) {
dev_err(hdev->dev,
"Failed to handle CpuCP total energy pkt, error %d\n",
rc);
return rc;
}
*total_energy = result;
return rc;
}
int get_used_pll_index(struct hl_device *hdev, u32 input_pll_index,
enum pll_index *pll_index)
{
struct asic_fixed_properties *prop = &hdev->asic_prop;
u8 pll_byte, pll_bit_off;
bool dynamic_pll;
int fw_pll_idx;
dynamic_pll = !!(prop->fw_app_cpu_boot_dev_sts0 &
CPU_BOOT_DEV_STS0_DYN_PLL_EN);
if (!dynamic_pll) {
/*
* in case we are working with legacy FW (each asic has unique
* PLL numbering) use the driver based index as they are
* aligned with fw legacy numbering
*/
*pll_index = input_pll_index;
return 0;
}
/* retrieve a FW compatible PLL index based on
* ASIC specific user request
*/
fw_pll_idx = hdev->asic_funcs->map_pll_idx_to_fw_idx(input_pll_index);
if (fw_pll_idx < 0) {
dev_err(hdev->dev, "Invalid PLL index (%u) error %d\n",
input_pll_index, fw_pll_idx);
return -EINVAL;
}
/* PLL map is a u8 array */
pll_byte = prop->cpucp_info.pll_map[fw_pll_idx >> 3];
pll_bit_off = fw_pll_idx & 0x7;
if (!(pll_byte & BIT(pll_bit_off))) {
dev_err(hdev->dev, "PLL index %d is not supported\n",
fw_pll_idx);
return -EINVAL;
}
*pll_index = fw_pll_idx;
return 0;
}
int hl_fw_cpucp_pll_info_get(struct hl_device *hdev, u32 pll_index,
u16 *pll_freq_arr)
{
struct cpucp_packet pkt;
enum pll_index used_pll_idx;
u64 result;
int rc;
rc = get_used_pll_index(hdev, pll_index, &used_pll_idx);
if (rc)
return rc;
memset(&pkt, 0, sizeof(pkt));
pkt.ctl = cpu_to_le32(CPUCP_PACKET_PLL_INFO_GET <<
CPUCP_PKT_CTL_OPCODE_SHIFT);
pkt.pll_type = __cpu_to_le16((u16)used_pll_idx);
rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
HL_CPUCP_INFO_TIMEOUT_USEC, &result);
if (rc) {
dev_err(hdev->dev, "Failed to read PLL info, error %d\n", rc);
return rc;
}
pll_freq_arr[0] = FIELD_GET(CPUCP_PKT_RES_PLL_OUT0_MASK, result);
pll_freq_arr[1] = FIELD_GET(CPUCP_PKT_RES_PLL_OUT1_MASK, result);
pll_freq_arr[2] = FIELD_GET(CPUCP_PKT_RES_PLL_OUT2_MASK, result);
pll_freq_arr[3] = FIELD_GET(CPUCP_PKT_RES_PLL_OUT3_MASK, result);
return 0;
}
int hl_fw_cpucp_power_get(struct hl_device *hdev, u64 *power)
{
struct cpucp_packet pkt;
u64 result;
int rc;
memset(&pkt, 0, sizeof(pkt));
pkt.ctl = cpu_to_le32(CPUCP_PACKET_POWER_GET <<
CPUCP_PKT_CTL_OPCODE_SHIFT);
pkt.type = cpu_to_le16(CPUCP_POWER_INPUT);
rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
HL_CPUCP_INFO_TIMEOUT_USEC, &result);
if (rc) {
dev_err(hdev->dev, "Failed to read power, error %d\n", rc);
return rc;
}
*power = result;
return rc;
}
int hl_fw_dram_replaced_row_get(struct hl_device *hdev,
struct cpucp_hbm_row_info *info)
{
struct cpucp_hbm_row_info *cpucp_repl_rows_info_cpu_addr;
dma_addr_t cpucp_repl_rows_info_dma_addr;
struct cpucp_packet pkt = {};
u64 result;
int rc;
cpucp_repl_rows_info_cpu_addr = hl_cpu_accessible_dma_pool_alloc(hdev,
sizeof(struct cpucp_hbm_row_info),
&cpucp_repl_rows_info_dma_addr);
if (!cpucp_repl_rows_info_cpu_addr) {
dev_err(hdev->dev,
"Failed to allocate DMA memory for CPU-CP replaced rows info packet\n");
return -ENOMEM;
}
memset(cpucp_repl_rows_info_cpu_addr, 0, sizeof(struct cpucp_hbm_row_info));
pkt.ctl = cpu_to_le32(CPUCP_PACKET_HBM_REPLACED_ROWS_INFO_GET <<
CPUCP_PKT_CTL_OPCODE_SHIFT);
pkt.addr = cpu_to_le64(cpucp_repl_rows_info_dma_addr);
pkt.data_max_size = cpu_to_le32(sizeof(struct cpucp_hbm_row_info));
rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
HL_CPUCP_INFO_TIMEOUT_USEC, &result);
if (rc) {
dev_err(hdev->dev,
"Failed to handle CPU-CP replaced rows info pkt, error %d\n", rc);
goto out;
}
memcpy(info, cpucp_repl_rows_info_cpu_addr, sizeof(*info));
out:
hl_cpu_accessible_dma_pool_free(hdev, sizeof(struct cpucp_hbm_row_info),
cpucp_repl_rows_info_cpu_addr);
return rc;
}
int hl_fw_dram_pending_row_get(struct hl_device *hdev, u32 *pend_rows_num)
{
struct cpucp_packet pkt;
u64 result;
int rc;
memset(&pkt, 0, sizeof(pkt));
pkt.ctl = cpu_to_le32(CPUCP_PACKET_HBM_PENDING_ROWS_STATUS << CPUCP_PKT_CTL_OPCODE_SHIFT);
rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 0, &result);
if (rc) {
dev_err(hdev->dev,
"Failed to handle CPU-CP pending rows info pkt, error %d\n", rc);
goto out;
}
*pend_rows_num = (u32) result;
out:
return rc;
}
int hl_fw_cpucp_engine_core_asid_set(struct hl_device *hdev, u32 asid)
{
struct cpucp_packet pkt;
int rc;
memset(&pkt, 0, sizeof(pkt));
pkt.ctl = cpu_to_le32(CPUCP_PACKET_ENGINE_CORE_ASID_SET << CPUCP_PKT_CTL_OPCODE_SHIFT);
pkt.value = cpu_to_le64(asid);
rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
HL_CPUCP_INFO_TIMEOUT_USEC, NULL);
if (rc)
dev_err(hdev->dev,
"Failed on ASID configuration request for engine core, error %d\n",
rc);
return rc;
}
void hl_fw_ask_hard_reset_without_linux(struct hl_device *hdev)
{
struct static_fw_load_mgr *static_loader =
&hdev->fw_loader.static_loader;
int rc;
if (hdev->asic_prop.dynamic_fw_load) {
rc = hl_fw_dynamic_send_protocol_cmd(hdev, &hdev->fw_loader,
COMMS_RST_DEV, 0, false,
hdev->fw_loader.cpu_timeout);
if (rc)
dev_warn(hdev->dev, "Failed sending COMMS_RST_DEV\n");
} else {
WREG32(static_loader->kmd_msg_to_cpu_reg, KMD_MSG_RST_DEV);
}
}
void hl_fw_ask_halt_machine_without_linux(struct hl_device *hdev)
{
struct static_fw_load_mgr *static_loader =
&hdev->fw_loader.static_loader;
int rc;
if (hdev->device_cpu_is_halted)
return;
/* Stop device CPU to make sure nothing bad happens */
if (hdev->asic_prop.dynamic_fw_load) {
rc = hl_fw_dynamic_send_protocol_cmd(hdev, &hdev->fw_loader,
COMMS_GOTO_WFE, 0, true,
hdev->fw_loader.cpu_timeout);
if (rc)
dev_warn(hdev->dev, "Failed sending COMMS_GOTO_WFE\n");
} else {
WREG32(static_loader->kmd_msg_to_cpu_reg, KMD_MSG_GOTO_WFE);
msleep(static_loader->cpu_reset_wait_msec);
/* Must clear this register in order to prevent preboot
* from reading WFE after reboot
*/
WREG32(static_loader->kmd_msg_to_cpu_reg, KMD_MSG_NA);
}
hdev->device_cpu_is_halted = true;
}
static void detect_cpu_boot_status(struct hl_device *hdev, u32 status)
{
/* Some of the status codes below are deprecated in newer f/w
* versions but we keep them here for backward compatibility
*/
switch (status) {
case CPU_BOOT_STATUS_NA:
dev_err(hdev->dev,
"Device boot progress - BTL/ROM did NOT run\n");
break;
case CPU_BOOT_STATUS_IN_WFE:
dev_err(hdev->dev,
"Device boot progress - Stuck inside WFE loop\n");
break;
case CPU_BOOT_STATUS_IN_BTL:
dev_err(hdev->dev,
"Device boot progress - Stuck in BTL\n");
break;
case CPU_BOOT_STATUS_IN_PREBOOT:
dev_err(hdev->dev,
"Device boot progress - Stuck in Preboot\n");
break;
case CPU_BOOT_STATUS_IN_SPL:
dev_err(hdev->dev,
"Device boot progress - Stuck in SPL\n");
break;
case CPU_BOOT_STATUS_IN_UBOOT:
dev_err(hdev->dev,
"Device boot progress - Stuck in u-boot\n");
break;
case CPU_BOOT_STATUS_DRAM_INIT_FAIL:
dev_err(hdev->dev,
"Device boot progress - DRAM initialization failed\n");
break;
case CPU_BOOT_STATUS_UBOOT_NOT_READY:
dev_err(hdev->dev,
"Device boot progress - Cannot boot\n");
break;
case CPU_BOOT_STATUS_TS_INIT_FAIL:
dev_err(hdev->dev,
"Device boot progress - Thermal Sensor initialization failed\n");
break;
case CPU_BOOT_STATUS_SECURITY_READY:
dev_err(hdev->dev,
"Device boot progress - Stuck in preboot after security initialization\n");
break;
default:
dev_err(hdev->dev,
"Device boot progress - Invalid status code %d\n",
status);
break;
}
}
static int hl_fw_wait_preboot_ready(struct hl_device *hdev)
{
struct pre_fw_load_props *pre_fw_load = &hdev->fw_loader.pre_fw_load;
u32 status;
int rc;
/* Need to check two possible scenarios:
*
* CPU_BOOT_STATUS_WAITING_FOR_BOOT_FIT - for newer firmwares where
* the preboot is waiting for the boot fit
*
* All other status values - for older firmwares where the uboot was
* loaded from the FLASH
*/
rc = hl_poll_timeout(
hdev,
pre_fw_load->cpu_boot_status_reg,
status,
(status == CPU_BOOT_STATUS_NIC_FW_RDY) ||
(status == CPU_BOOT_STATUS_READY_TO_BOOT) ||
(status == CPU_BOOT_STATUS_WAITING_FOR_BOOT_FIT),
hdev->fw_poll_interval_usec,
pre_fw_load->wait_for_preboot_timeout);
if (rc) {
dev_err(hdev->dev, "CPU boot ready status timeout\n");
detect_cpu_boot_status(hdev, status);
/* If we read all FF, then something is totally wrong, no point
* of reading specific errors
*/
if (status != -1)
fw_read_errors(hdev, pre_fw_load->boot_err0_reg,
pre_fw_load->boot_err1_reg,
pre_fw_load->sts_boot_dev_sts0_reg,
pre_fw_load->sts_boot_dev_sts1_reg);
return -EIO;
}
hdev->fw_loader.fw_comp_loaded |= FW_TYPE_PREBOOT_CPU;
return 0;
}
static int hl_fw_read_preboot_caps(struct hl_device *hdev)
{
struct pre_fw_load_props *pre_fw_load;
struct asic_fixed_properties *prop;
u32 reg_val;
int rc;
prop = &hdev->asic_prop;
pre_fw_load = &hdev->fw_loader.pre_fw_load;
rc = hl_fw_wait_preboot_ready(hdev);
if (rc)
return rc;
/*
* the registers DEV_STS* contain FW capabilities/features.
* We can rely on this registers only if bit CPU_BOOT_DEV_STS*_ENABLED
* is set.
* In the first read of this register we store the value of this
* register ONLY if the register is enabled (which will be propagated
* to next stages) and also mark the register as valid.
* In case it is not enabled the stored value will be left 0- all
* caps/features are off
*/
reg_val = RREG32(pre_fw_load->sts_boot_dev_sts0_reg);
if (reg_val & CPU_BOOT_DEV_STS0_ENABLED) {
prop->fw_cpu_boot_dev_sts0_valid = true;
prop->fw_preboot_cpu_boot_dev_sts0 = reg_val;
}
reg_val = RREG32(pre_fw_load->sts_boot_dev_sts1_reg);
if (reg_val & CPU_BOOT_DEV_STS1_ENABLED) {
prop->fw_cpu_boot_dev_sts1_valid = true;
prop->fw_preboot_cpu_boot_dev_sts1 = reg_val;
}
prop->dynamic_fw_load = !!(prop->fw_preboot_cpu_boot_dev_sts0 &
CPU_BOOT_DEV_STS0_FW_LD_COM_EN);
/* initialize FW loader once we know what load protocol is used */
hdev->asic_funcs->init_firmware_loader(hdev);
dev_dbg(hdev->dev, "Attempting %s FW load\n",
prop->dynamic_fw_load ? "dynamic" : "legacy");
return 0;
}
static int hl_fw_static_read_device_fw_version(struct hl_device *hdev,
enum hl_fw_component fwc)
{
struct asic_fixed_properties *prop = &hdev->asic_prop;
struct fw_load_mgr *fw_loader = &hdev->fw_loader;
struct static_fw_load_mgr *static_loader;
char *dest, *boot_ver, *preboot_ver;
u32 ver_off, limit;
const char *name;
char btl_ver[32];
static_loader = &hdev->fw_loader.static_loader;
switch (fwc) {
case FW_COMP_BOOT_FIT:
ver_off = RREG32(static_loader->boot_fit_version_offset_reg);
dest = prop->uboot_ver;
name = "Boot-fit";
limit = static_loader->boot_fit_version_max_off;
break;
case FW_COMP_PREBOOT:
ver_off = RREG32(static_loader->preboot_version_offset_reg);
dest = prop->preboot_ver;
name = "Preboot";
limit = static_loader->preboot_version_max_off;
break;
default:
dev_warn(hdev->dev, "Undefined FW component: %d\n", fwc);
return -EIO;
}
ver_off &= static_loader->sram_offset_mask;
if (ver_off < limit) {
memcpy_fromio(dest,
hdev->pcie_bar[fw_loader->sram_bar_id] + ver_off,
VERSION_MAX_LEN);
} else {
dev_err(hdev->dev, "%s version offset (0x%x) is above SRAM\n",
name, ver_off);
strscpy(dest, "unavailable", VERSION_MAX_LEN);
return -EIO;
}
if (fwc == FW_COMP_BOOT_FIT) {
boot_ver = extract_fw_ver_from_str(prop->uboot_ver);
if (boot_ver) {
dev_info(hdev->dev, "boot-fit version %s\n", boot_ver);
kfree(boot_ver);
}
} else if (fwc == FW_COMP_PREBOOT) {
preboot_ver = strnstr(prop->preboot_ver, "Preboot",
VERSION_MAX_LEN);
if (preboot_ver && preboot_ver != prop->preboot_ver) {
strscpy(btl_ver, prop->preboot_ver,
min((int) (preboot_ver - prop->preboot_ver),
31));
dev_info(hdev->dev, "%s\n", btl_ver);
}
preboot_ver = extract_fw_ver_from_str(prop->preboot_ver);
if (preboot_ver) {
dev_info(hdev->dev, "preboot version %s\n",
preboot_ver);
kfree(preboot_ver);
}
}
return 0;
}
/**
* hl_fw_preboot_update_state - update internal data structures during
* handshake with preboot
*
*
* @hdev: pointer to the habanalabs device structure
*
* @return 0 on success, otherwise non-zero error code
*/
static void hl_fw_preboot_update_state(struct hl_device *hdev)
{
struct asic_fixed_properties *prop = &hdev->asic_prop;
u32 cpu_boot_dev_sts0, cpu_boot_dev_sts1;
cpu_boot_dev_sts0 = prop->fw_preboot_cpu_boot_dev_sts0;
cpu_boot_dev_sts1 = prop->fw_preboot_cpu_boot_dev_sts1;
/* We read boot_dev_sts registers multiple times during boot:
* 1. preboot - a. Check whether the security status bits are valid
* b. Check whether fw security is enabled
* c. Check whether hard reset is done by preboot
* 2. boot cpu - a. Fetch boot cpu security status
* b. Check whether hard reset is done by boot cpu
* 3. FW application - a. Fetch fw application security status
* b. Check whether hard reset is done by fw app
*/
prop->hard_reset_done_by_fw = !!(cpu_boot_dev_sts0 & CPU_BOOT_DEV_STS0_FW_HARD_RST_EN);
prop->fw_security_enabled = !!(cpu_boot_dev_sts0 & CPU_BOOT_DEV_STS0_SECURITY_EN);
dev_dbg(hdev->dev, "Firmware preboot boot device status0 %#x\n",
cpu_boot_dev_sts0);
dev_dbg(hdev->dev, "Firmware preboot boot device status1 %#x\n",
cpu_boot_dev_sts1);
dev_dbg(hdev->dev, "Firmware preboot hard-reset is %s\n",
prop->hard_reset_done_by_fw ? "enabled" : "disabled");
dev_dbg(hdev->dev, "firmware-level security is %s\n",
prop->fw_security_enabled ? "enabled" : "disabled");
dev_dbg(hdev->dev, "GIC controller is %s\n",
prop->gic_interrupts_enable ? "enabled" : "disabled");
}
static int hl_fw_static_read_preboot_status(struct hl_device *hdev)
{
int rc;
rc = hl_fw_static_read_device_fw_version(hdev, FW_COMP_PREBOOT);
if (rc)
return rc;
return 0;
}
int hl_fw_read_preboot_status(struct hl_device *hdev)
{
int rc;
if (!(hdev->fw_components & FW_TYPE_PREBOOT_CPU))
return 0;
/* get FW pre-load parameters */
hdev->asic_funcs->init_firmware_preload_params(hdev);
/*
* In order to determine boot method (static VS dynamic) we need to
* read the boot caps register
*/
rc = hl_fw_read_preboot_caps(hdev);
if (rc)
return rc;
hl_fw_preboot_update_state(hdev);
/* no need to read preboot status in dynamic load */
if (hdev->asic_prop.dynamic_fw_load)
return 0;
return hl_fw_static_read_preboot_status(hdev);
}
/* associate string with COMM status */
static char *hl_dynamic_fw_status_str[COMMS_STS_INVLD_LAST] = {
[COMMS_STS_NOOP] = "NOOP",
[COMMS_STS_ACK] = "ACK",
[COMMS_STS_OK] = "OK",
[COMMS_STS_ERR] = "ERR",
[COMMS_STS_VALID_ERR] = "VALID_ERR",
[COMMS_STS_TIMEOUT_ERR] = "TIMEOUT_ERR",
};
/**
* hl_fw_dynamic_report_error_status - report error status
*
* @hdev: pointer to the habanalabs device structure
* @status: value of FW status register
* @expected_status: the expected status
*/
static void hl_fw_dynamic_report_error_status(struct hl_device *hdev,
u32 status,
enum comms_sts expected_status)
{
enum comms_sts comm_status =
FIELD_GET(COMMS_STATUS_STATUS_MASK, status);
if (comm_status < COMMS_STS_INVLD_LAST)
dev_err(hdev->dev, "Device status %s, expected status: %s\n",
hl_dynamic_fw_status_str[comm_status],
hl_dynamic_fw_status_str[expected_status]);
else
dev_err(hdev->dev, "Device status unknown %d, expected status: %s\n",
comm_status,
hl_dynamic_fw_status_str[expected_status]);
}
/**
* hl_fw_dynamic_send_cmd - send LKD to FW cmd
*
* @hdev: pointer to the habanalabs device structure
* @fw_loader: managing structure for loading device's FW
* @cmd: LKD to FW cmd code
* @size: size of next FW component to be loaded (0 if not necessary)
*
* LDK to FW exact command layout is defined at struct comms_command.
* note: the size argument is used only when the next FW component should be
* loaded, otherwise it shall be 0. the size is used by the FW in later
* protocol stages and when sending only indicating the amount of memory
* to be allocated by the FW to receive the next boot component.
*/
static void hl_fw_dynamic_send_cmd(struct hl_device *hdev,
struct fw_load_mgr *fw_loader,
enum comms_cmd cmd, unsigned int size)
{
struct cpu_dyn_regs *dyn_regs;
u32 val;
dyn_regs = &fw_loader->dynamic_loader.comm_desc.cpu_dyn_regs;
val = FIELD_PREP(COMMS_COMMAND_CMD_MASK, cmd);
val |= FIELD_PREP(COMMS_COMMAND_SIZE_MASK, size);
WREG32(le32_to_cpu(dyn_regs->kmd_msg_to_cpu), val);
}
/**
* hl_fw_dynamic_extract_fw_response - update the FW response
*
* @hdev: pointer to the habanalabs device structure
* @fw_loader: managing structure for loading device's FW
* @response: FW response
* @status: the status read from CPU status register
*
* @return 0 on success, otherwise non-zero error code
*/
static int hl_fw_dynamic_extract_fw_response(struct hl_device *hdev,
struct fw_load_mgr *fw_loader,
struct fw_response *response,
u32 status)
{
response->status = FIELD_GET(COMMS_STATUS_STATUS_MASK, status);
response->ram_offset = FIELD_GET(COMMS_STATUS_OFFSET_MASK, status) <<
COMMS_STATUS_OFFSET_ALIGN_SHIFT;
response->ram_type = FIELD_GET(COMMS_STATUS_RAM_TYPE_MASK, status);
if ((response->ram_type != COMMS_SRAM) &&
(response->ram_type != COMMS_DRAM)) {
dev_err(hdev->dev, "FW status: invalid RAM type %u\n",
response->ram_type);
return -EIO;
}
return 0;
}
/**
* hl_fw_dynamic_wait_for_status - wait for status in dynamic FW load
*
* @hdev: pointer to the habanalabs device structure
* @fw_loader: managing structure for loading device's FW
* @expected_status: expected status to wait for
* @timeout: timeout for status wait
*
* @return 0 on success, otherwise non-zero error code
*
* waiting for status from FW include polling the FW status register until
* expected status is received or timeout occurs (whatever occurs first).
*/
static int hl_fw_dynamic_wait_for_status(struct hl_device *hdev,
struct fw_load_mgr *fw_loader,
enum comms_sts expected_status,
u32 timeout)
{
struct cpu_dyn_regs *dyn_regs;
u32 status;
int rc;
dyn_regs = &fw_loader->dynamic_loader.comm_desc.cpu_dyn_regs;
/* Wait for expected status */
rc = hl_poll_timeout(
hdev,
le32_to_cpu(dyn_regs->cpu_cmd_status_to_host),
status,
FIELD_GET(COMMS_STATUS_STATUS_MASK, status) == expected_status,
hdev->fw_comms_poll_interval_usec,
timeout);
if (rc) {
hl_fw_dynamic_report_error_status(hdev, status,
expected_status);
return -EIO;
}
/*
* skip storing FW response for NOOP to preserve the actual desired
* FW status
*/
if (expected_status == COMMS_STS_NOOP)
return 0;
rc = hl_fw_dynamic_extract_fw_response(hdev, fw_loader,
&fw_loader->dynamic_loader.response,
status);
return rc;
}
/**
* hl_fw_dynamic_send_clear_cmd - send clear command to FW
*
* @hdev: pointer to the habanalabs device structure
* @fw_loader: managing structure for loading device's FW
*
* @return 0 on success, otherwise non-zero error code
*
* after command cycle between LKD to FW CPU (i.e. LKD got an expected status
* from FW) we need to clear the CPU status register in order to avoid garbage
* between command cycles.
* This is done by sending clear command and polling the CPU to LKD status
* register to hold the status NOOP
*/
static int hl_fw_dynamic_send_clear_cmd(struct hl_device *hdev,
struct fw_load_mgr *fw_loader)
{
hl_fw_dynamic_send_cmd(hdev, fw_loader, COMMS_CLR_STS, 0);
return hl_fw_dynamic_wait_for_status(hdev, fw_loader, COMMS_STS_NOOP,
fw_loader->cpu_timeout);
}
/**
* hl_fw_dynamic_send_protocol_cmd - send LKD to FW cmd and wait for ACK
*
* @hdev: pointer to the habanalabs device structure
* @fw_loader: managing structure for loading device's FW
* @cmd: LKD to FW cmd code
* @size: size of next FW component to be loaded (0 if not necessary)
* @wait_ok: if true also wait for OK response from FW
* @timeout: timeout for status wait
*
* @return 0 on success, otherwise non-zero error code
*
* brief:
* when sending protocol command we have the following steps:
* - send clear (clear command and verify clear status register)
* - send the actual protocol command
* - wait for ACK on the protocol command
* - send clear
* - send NOOP
* if, in addition, the specific protocol command should wait for OK then:
* - wait for OK
* - send clear
* - send NOOP
*
* NOTES:
* send clear: this is necessary in order to clear the status register to avoid
* leftovers between command
* NOOP command: necessary to avoid loop on the clear command by the FW
*/
int hl_fw_dynamic_send_protocol_cmd(struct hl_device *hdev,
struct fw_load_mgr *fw_loader,
enum comms_cmd cmd, unsigned int size,
bool wait_ok, u32 timeout)
{
int rc;
/* first send clear command to clean former commands */
rc = hl_fw_dynamic_send_clear_cmd(hdev, fw_loader);
/* send the actual command */
hl_fw_dynamic_send_cmd(hdev, fw_loader, cmd, size);
/* wait for ACK for the command */
rc = hl_fw_dynamic_wait_for_status(hdev, fw_loader, COMMS_STS_ACK,
timeout);
if (rc)
return rc;
/* clear command to prepare for NOOP command */
rc = hl_fw_dynamic_send_clear_cmd(hdev, fw_loader);
if (rc)
return rc;
/* send the actual NOOP command */
hl_fw_dynamic_send_cmd(hdev, fw_loader, COMMS_NOOP, 0);
if (!wait_ok)
return 0;
rc = hl_fw_dynamic_wait_for_status(hdev, fw_loader, COMMS_STS_OK,
timeout);
if (rc)
return rc;
/* clear command to prepare for NOOP command */
rc = hl_fw_dynamic_send_clear_cmd(hdev, fw_loader);
if (rc)
return rc;
/* send the actual NOOP command */
hl_fw_dynamic_send_cmd(hdev, fw_loader, COMMS_NOOP, 0);
return 0;
}
/**
* hl_fw_compat_crc32 - CRC compatible with FW
*
* @data: pointer to the data
* @size: size of the data
*
* @return the CRC32 result
*
* NOTE: kernel's CRC32 differs from standard CRC32 calculation.
* in order to be aligned we need to flip the bits of both the input
* initial CRC and kernel's CRC32 result.
* in addition both sides use initial CRC of 0,
*/
static u32 hl_fw_compat_crc32(u8 *data, size_t size)
{
return ~crc32_le(~((u32)0), data, size);
}
/**
* hl_fw_dynamic_validate_memory_bound - validate memory bounds for memory
* transfer (image or descriptor) between
* host and FW
*
* @hdev: pointer to the habanalabs device structure
* @addr: device address of memory transfer
* @size: memory transfer size
* @region: PCI memory region
*
* @return 0 on success, otherwise non-zero error code
*/
static int hl_fw_dynamic_validate_memory_bound(struct hl_device *hdev,
u64 addr, size_t size,
struct pci_mem_region *region)
{
u64 end_addr;
/* now make sure that the memory transfer is within region's bounds */
end_addr = addr + size;
if (end_addr >= region->region_base + region->region_size) {
dev_err(hdev->dev,
"dynamic FW load: memory transfer end address out of memory region bounds. addr: %llx\n",
end_addr);
return -EIO;
}
/*
* now make sure memory transfer is within predefined BAR bounds.
* this is to make sure we do not need to set the bar (e.g. for DRAM
* memory transfers)
*/
if (end_addr >= region->region_base - region->offset_in_bar +
region->bar_size) {
dev_err(hdev->dev,
"FW image beyond PCI BAR bounds\n");
return -EIO;
}
return 0;
}
/**
* hl_fw_dynamic_validate_descriptor - validate FW descriptor
*
* @hdev: pointer to the habanalabs device structure
* @fw_loader: managing structure for loading device's FW
* @fw_desc: the descriptor form FW
*
* @return 0 on success, otherwise non-zero error code
*/
static int hl_fw_dynamic_validate_descriptor(struct hl_device *hdev,
struct fw_load_mgr *fw_loader,
struct lkd_fw_comms_desc *fw_desc)
{
struct pci_mem_region *region;
enum pci_region region_id;
size_t data_size;
u32 data_crc32;
u8 *data_ptr;
u64 addr;
int rc;
if (le32_to_cpu(fw_desc->header.magic) != HL_COMMS_DESC_MAGIC)
dev_warn(hdev->dev, "Invalid magic for dynamic FW descriptor (%x)\n",
fw_desc->header.magic);
if (fw_desc->header.version != HL_COMMS_DESC_VER)
dev_warn(hdev->dev, "Invalid version for dynamic FW descriptor (%x)\n",
fw_desc->header.version);
/*
* Calc CRC32 of data without header. use the size of the descriptor
* reported by firmware, without calculating it ourself, to allow adding
* more fields to the lkd_fw_comms_desc structure.
* note that no alignment/stride address issues here as all structures
* are 64 bit padded.
*/
data_ptr = (u8 *)fw_desc + sizeof(struct comms_desc_header);
data_size = le16_to_cpu(fw_desc->header.size);
data_crc32 = hl_fw_compat_crc32(data_ptr, data_size);
if (data_crc32 != le32_to_cpu(fw_desc->header.crc32)) {
dev_err(hdev->dev, "CRC32 mismatch for dynamic FW descriptor (%x:%x)\n",
data_crc32, fw_desc->header.crc32);
return -EIO;
}
/* find memory region to which to copy the image */
addr = le64_to_cpu(fw_desc->img_addr);
region_id = hl_get_pci_memory_region(hdev, addr);
if ((region_id != PCI_REGION_SRAM) && ((region_id != PCI_REGION_DRAM))) {
dev_err(hdev->dev, "Invalid region to copy FW image address=%llx\n", addr);
return -EIO;
}
region = &hdev->pci_mem_region[region_id];
/* store the region for the copy stage */
fw_loader->dynamic_loader.image_region = region;
/*
* here we know that the start address is valid, now make sure that the
* image is within region's bounds
*/
rc = hl_fw_dynamic_validate_memory_bound(hdev, addr,
fw_loader->dynamic_loader.fw_image_size,
region);
if (rc) {
dev_err(hdev->dev, "invalid mem transfer request for FW image\n");
return rc;
}
/* here we can mark the descriptor as valid as the content has been validated */
fw_loader->dynamic_loader.fw_desc_valid = true;
return 0;
}
static int hl_fw_dynamic_validate_response(struct hl_device *hdev,
struct fw_response *response,
struct pci_mem_region *region)
{
u64 device_addr;
int rc;
device_addr = region->region_base + response->ram_offset;
/*
* validate that the descriptor is within region's bounds
* Note that as the start address was supplied according to the RAM
* type- testing only the end address is enough
*/
rc = hl_fw_dynamic_validate_memory_bound(hdev, device_addr,
sizeof(struct lkd_fw_comms_desc),
region);
return rc;
}
/**
* hl_fw_dynamic_read_and_validate_descriptor - read and validate FW descriptor
*
* @hdev: pointer to the habanalabs device structure
* @fw_loader: managing structure for loading device's FW
*
* @return 0 on success, otherwise non-zero error code
*/
static int hl_fw_dynamic_read_and_validate_descriptor(struct hl_device *hdev,
struct fw_load_mgr *fw_loader)
{
struct lkd_fw_comms_desc *fw_desc;
struct pci_mem_region *region;
struct fw_response *response;
enum pci_region region_id;
void __iomem *src;
int rc;
fw_desc = &fw_loader->dynamic_loader.comm_desc;
response = &fw_loader->dynamic_loader.response;
region_id = (response->ram_type == COMMS_SRAM) ?
PCI_REGION_SRAM : PCI_REGION_DRAM;
region = &hdev->pci_mem_region[region_id];
rc = hl_fw_dynamic_validate_response(hdev, response, region);
if (rc) {
dev_err(hdev->dev,
"invalid mem transfer request for FW descriptor\n");
return rc;
}
/*
* extract address to copy the descriptor from
* in addition, as the descriptor value is going to be over-ridden by new data- we mark it
* as invalid.
* it will be marked again as valid once validated
*/
fw_loader->dynamic_loader.fw_desc_valid = false;
src = hdev->pcie_bar[region->bar_id] + region->offset_in_bar +
response->ram_offset;
memcpy_fromio(fw_desc, src, sizeof(struct lkd_fw_comms_desc));
return hl_fw_dynamic_validate_descriptor(hdev, fw_loader, fw_desc);
}
/**
* hl_fw_dynamic_request_descriptor - handshake with CPU to get FW descriptor
*
* @hdev: pointer to the habanalabs device structure
* @fw_loader: managing structure for loading device's FW
* @next_image_size: size to allocate for next FW component
*
* @return 0 on success, otherwise non-zero error code
*/
static int hl_fw_dynamic_request_descriptor(struct hl_device *hdev,
struct fw_load_mgr *fw_loader,
size_t next_image_size)
{
int rc;
rc = hl_fw_dynamic_send_protocol_cmd(hdev, fw_loader, COMMS_PREP_DESC,
next_image_size, true,
fw_loader->cpu_timeout);
if (rc)
return rc;
return hl_fw_dynamic_read_and_validate_descriptor(hdev, fw_loader);
}
/**
* hl_fw_dynamic_read_device_fw_version - read FW version to exposed properties
*
* @hdev: pointer to the habanalabs device structure
* @fwc: the firmware component
* @fw_version: fw component's version string
*/
static int hl_fw_dynamic_read_device_fw_version(struct hl_device *hdev,
enum hl_fw_component fwc,
const char *fw_version)
{
struct asic_fixed_properties *prop = &hdev->asic_prop;
char *preboot_ver, *boot_ver;
char btl_ver[32];
switch (fwc) {
case FW_COMP_BOOT_FIT:
strscpy(prop->uboot_ver, fw_version, VERSION_MAX_LEN);
boot_ver = extract_fw_ver_from_str(prop->uboot_ver);
if (boot_ver) {
dev_info(hdev->dev, "boot-fit version %s\n", boot_ver);
kfree(boot_ver);
}
break;
case FW_COMP_PREBOOT:
strscpy(prop->preboot_ver, fw_version, VERSION_MAX_LEN);
preboot_ver = strnstr(prop->preboot_ver, "Preboot",
VERSION_MAX_LEN);
if (preboot_ver && preboot_ver != prop->preboot_ver) {
strscpy(btl_ver, prop->preboot_ver,
min((int) (preboot_ver - prop->preboot_ver), 31));
dev_info(hdev->dev, "%s\n", btl_ver);
}
preboot_ver = extract_fw_ver_from_str(prop->preboot_ver);
if (preboot_ver) {
int rc;
dev_info(hdev->dev, "preboot version %s\n", preboot_ver);
/* This function takes care of freeing preboot_ver */
rc = extract_fw_sub_versions(hdev, preboot_ver);
if (rc)
return rc;
}
break;
default:
dev_warn(hdev->dev, "Undefined FW component: %d\n", fwc);
return -EINVAL;
}
return 0;
}
/**
* hl_fw_dynamic_copy_image - copy image to memory allocated by the FW
*
* @hdev: pointer to the habanalabs device structure
* @fw: fw descriptor
* @fw_loader: managing structure for loading device's FW
*/
static int hl_fw_dynamic_copy_image(struct hl_device *hdev,
const struct firmware *fw,
struct fw_load_mgr *fw_loader)
{
struct lkd_fw_comms_desc *fw_desc;
struct pci_mem_region *region;
void __iomem *dest;
u64 addr;
int rc;
fw_desc = &fw_loader->dynamic_loader.comm_desc;
addr = le64_to_cpu(fw_desc->img_addr);
/* find memory region to which to copy the image */
region = fw_loader->dynamic_loader.image_region;
dest = hdev->pcie_bar[region->bar_id] + region->offset_in_bar +
(addr - region->region_base);
rc = hl_fw_copy_fw_to_device(hdev, fw, dest,
fw_loader->boot_fit_img.src_off,
fw_loader->boot_fit_img.copy_size);
return rc;
}
/**
* hl_fw_dynamic_copy_msg - copy msg to memory allocated by the FW
*
* @hdev: pointer to the habanalabs device structure
* @msg: message
* @fw_loader: managing structure for loading device's FW
*/
static int hl_fw_dynamic_copy_msg(struct hl_device *hdev,
struct lkd_msg_comms *msg, struct fw_load_mgr *fw_loader)
{
struct lkd_fw_comms_desc *fw_desc;
struct pci_mem_region *region;
void __iomem *dest;
u64 addr;
int rc;
fw_desc = &fw_loader->dynamic_loader.comm_desc;
addr = le64_to_cpu(fw_desc->img_addr);
/* find memory region to which to copy the image */
region = fw_loader->dynamic_loader.image_region;
dest = hdev->pcie_bar[region->bar_id] + region->offset_in_bar +
(addr - region->region_base);
rc = hl_fw_copy_msg_to_device(hdev, msg, dest, 0, 0);
return rc;
}
/**
* hl_fw_boot_fit_update_state - update internal data structures after boot-fit
* is loaded
*
* @hdev: pointer to the habanalabs device structure
* @cpu_boot_dev_sts0_reg: register holding CPU boot dev status 0
* @cpu_boot_dev_sts1_reg: register holding CPU boot dev status 1
*
* @return 0 on success, otherwise non-zero error code
*/
static void hl_fw_boot_fit_update_state(struct hl_device *hdev,
u32 cpu_boot_dev_sts0_reg,
u32 cpu_boot_dev_sts1_reg)
{
struct asic_fixed_properties *prop = &hdev->asic_prop;
hdev->fw_loader.fw_comp_loaded |= FW_TYPE_BOOT_CPU;
/* Read boot_cpu status bits */
if (prop->fw_preboot_cpu_boot_dev_sts0 & CPU_BOOT_DEV_STS0_ENABLED) {
prop->fw_bootfit_cpu_boot_dev_sts0 =
RREG32(cpu_boot_dev_sts0_reg);
prop->hard_reset_done_by_fw = !!(prop->fw_bootfit_cpu_boot_dev_sts0 &
CPU_BOOT_DEV_STS0_FW_HARD_RST_EN);
dev_dbg(hdev->dev, "Firmware boot CPU status0 %#x\n",
prop->fw_bootfit_cpu_boot_dev_sts0);
}
if (prop->fw_cpu_boot_dev_sts1_valid) {
prop->fw_bootfit_cpu_boot_dev_sts1 =
RREG32(cpu_boot_dev_sts1_reg);
dev_dbg(hdev->dev, "Firmware boot CPU status1 %#x\n",
prop->fw_bootfit_cpu_boot_dev_sts1);
}
dev_dbg(hdev->dev, "Firmware boot CPU hard-reset is %s\n",
prop->hard_reset_done_by_fw ? "enabled" : "disabled");
}
static void hl_fw_dynamic_update_linux_interrupt_if(struct hl_device *hdev)
{
struct cpu_dyn_regs *dyn_regs =
&hdev->fw_loader.dynamic_loader.comm_desc.cpu_dyn_regs;
/* Check whether all 3 interrupt interfaces are set, if not use a
* single interface
*/
if (!hdev->asic_prop.gic_interrupts_enable &&
!(hdev->asic_prop.fw_app_cpu_boot_dev_sts0 &
CPU_BOOT_DEV_STS0_MULTI_IRQ_POLL_EN)) {
dyn_regs->gic_host_halt_irq = dyn_regs->gic_host_pi_upd_irq;
dyn_regs->gic_host_ints_irq = dyn_regs->gic_host_pi_upd_irq;
dev_warn(hdev->dev,
"Using a single interrupt interface towards cpucp");
}
}
/**
* hl_fw_dynamic_load_image - load FW image using dynamic protocol
*
* @hdev: pointer to the habanalabs device structure
* @fw_loader: managing structure for loading device's FW
* @load_fwc: the FW component to be loaded
* @img_ld_timeout: image load timeout
*
* @return 0 on success, otherwise non-zero error code
*/
static int hl_fw_dynamic_load_image(struct hl_device *hdev,
struct fw_load_mgr *fw_loader,
enum hl_fw_component load_fwc,
u32 img_ld_timeout)
{
enum hl_fw_component cur_fwc;
const struct firmware *fw;
char *fw_name;
int rc = 0;
/*
* when loading image we have one of 2 scenarios:
* 1. current FW component is preboot and we want to load boot-fit
* 2. current FW component is boot-fit and we want to load linux
*/
if (load_fwc == FW_COMP_BOOT_FIT) {
cur_fwc = FW_COMP_PREBOOT;
fw_name = fw_loader->boot_fit_img.image_name;
} else {
cur_fwc = FW_COMP_BOOT_FIT;
fw_name = fw_loader->linux_img.image_name;
}
/* request FW in order to communicate to FW the size to be allocated */
rc = hl_request_fw(hdev, &fw, fw_name);
if (rc)
return rc;
/* store the image size for future validation */
fw_loader->dynamic_loader.fw_image_size = fw->size;
rc = hl_fw_dynamic_request_descriptor(hdev, fw_loader, fw->size);
if (rc)
goto release_fw;
/* read preboot version */
rc = hl_fw_dynamic_read_device_fw_version(hdev, cur_fwc,
fw_loader->dynamic_loader.comm_desc.cur_fw_ver);
if (rc)
goto release_fw;
/* update state according to boot stage */
if (cur_fwc == FW_COMP_BOOT_FIT) {
struct cpu_dyn_regs *dyn_regs;
dyn_regs = &fw_loader->dynamic_loader.comm_desc.cpu_dyn_regs;
hl_fw_boot_fit_update_state(hdev,
le32_to_cpu(dyn_regs->cpu_boot_dev_sts0),
le32_to_cpu(dyn_regs->cpu_boot_dev_sts1));
}
/* copy boot fit to space allocated by FW */
rc = hl_fw_dynamic_copy_image(hdev, fw, fw_loader);
if (rc)
goto release_fw;
rc = hl_fw_dynamic_send_protocol_cmd(hdev, fw_loader, COMMS_DATA_RDY,
0, true,
fw_loader->cpu_timeout);
if (rc)
goto release_fw;
rc = hl_fw_dynamic_send_protocol_cmd(hdev, fw_loader, COMMS_EXEC,
0, false,
img_ld_timeout);
release_fw:
hl_release_firmware(fw);
return rc;
}
static int hl_fw_dynamic_wait_for_boot_fit_active(struct hl_device *hdev,
struct fw_load_mgr *fw_loader)
{
struct dynamic_fw_load_mgr *dyn_loader;
u32 status;
int rc;
dyn_loader = &fw_loader->dynamic_loader;
/*
* Make sure CPU boot-loader is running
* Note that the CPU_BOOT_STATUS_SRAM_AVAIL is generally set by Linux
* yet there is a debug scenario in which we loading uboot (without Linux)
* which at later stage is relocated to DRAM. In this case we expect
* uboot to set the CPU_BOOT_STATUS_SRAM_AVAIL and so we add it to the
* poll flags
*/
rc = hl_poll_timeout(
hdev,
le32_to_cpu(dyn_loader->comm_desc.cpu_dyn_regs.cpu_boot_status),
status,
(status == CPU_BOOT_STATUS_READY_TO_BOOT) ||
(status == CPU_BOOT_STATUS_SRAM_AVAIL),
hdev->fw_poll_interval_usec,
dyn_loader->wait_for_bl_timeout);
if (rc) {
dev_err(hdev->dev, "failed to wait for boot\n");
return rc;
}
dev_dbg(hdev->dev, "uboot status = %d\n", status);
return 0;
}
static int hl_fw_dynamic_wait_for_linux_active(struct hl_device *hdev,
struct fw_load_mgr *fw_loader)
{
struct dynamic_fw_load_mgr *dyn_loader;
u32 status;
int rc;
dyn_loader = &fw_loader->dynamic_loader;
/* Make sure CPU linux is running */
rc = hl_poll_timeout(
hdev,
le32_to_cpu(dyn_loader->comm_desc.cpu_dyn_regs.cpu_boot_status),
status,
(status == CPU_BOOT_STATUS_SRAM_AVAIL),
hdev->fw_poll_interval_usec,
fw_loader->cpu_timeout);
if (rc) {
dev_err(hdev->dev, "failed to wait for Linux\n");
return rc;
}
dev_dbg(hdev->dev, "Boot status = %d\n", status);
return 0;
}
/**
* hl_fw_linux_update_state - update internal data structures after Linux
* is loaded.
* Note: Linux initialization is comprised mainly
* of two stages - loading kernel (SRAM_AVAIL)
* & loading ARMCP.
* Therefore reading boot device status in any of
* these stages might result in different values.
*
* @hdev: pointer to the habanalabs device structure
* @cpu_boot_dev_sts0_reg: register holding CPU boot dev status 0
* @cpu_boot_dev_sts1_reg: register holding CPU boot dev status 1
*
* @return 0 on success, otherwise non-zero error code
*/
static void hl_fw_linux_update_state(struct hl_device *hdev,
u32 cpu_boot_dev_sts0_reg,
u32 cpu_boot_dev_sts1_reg)
{
struct asic_fixed_properties *prop = &hdev->asic_prop;
hdev->fw_loader.fw_comp_loaded |= FW_TYPE_LINUX;
/* Read FW application security bits */
if (prop->fw_cpu_boot_dev_sts0_valid) {
prop->fw_app_cpu_boot_dev_sts0 = RREG32(cpu_boot_dev_sts0_reg);
prop->hard_reset_done_by_fw = !!(prop->fw_app_cpu_boot_dev_sts0 &
CPU_BOOT_DEV_STS0_FW_HARD_RST_EN);
if (prop->fw_app_cpu_boot_dev_sts0 &
CPU_BOOT_DEV_STS0_GIC_PRIVILEGED_EN)
prop->gic_interrupts_enable = false;
dev_dbg(hdev->dev,
"Firmware application CPU status0 %#x\n",
prop->fw_app_cpu_boot_dev_sts0);
dev_dbg(hdev->dev, "GIC controller is %s\n",
prop->gic_interrupts_enable ?
"enabled" : "disabled");
}
if (prop->fw_cpu_boot_dev_sts1_valid) {
prop->fw_app_cpu_boot_dev_sts1 = RREG32(cpu_boot_dev_sts1_reg);
dev_dbg(hdev->dev,
"Firmware application CPU status1 %#x\n",
prop->fw_app_cpu_boot_dev_sts1);
}
dev_dbg(hdev->dev, "Firmware application CPU hard-reset is %s\n",
prop->hard_reset_done_by_fw ? "enabled" : "disabled");
dev_info(hdev->dev, "Successfully loaded firmware to device\n");
}
/**
* hl_fw_dynamic_send_msg - send a COMMS message with attached data
*
* @hdev: pointer to the habanalabs device structure
* @fw_loader: managing structure for loading device's FW
* @msg_type: message type
* @data: data to be sent
*
* @return 0 on success, otherwise non-zero error code
*/
static int hl_fw_dynamic_send_msg(struct hl_device *hdev,
struct fw_load_mgr *fw_loader, u8 msg_type, void *data)
{
struct lkd_msg_comms msg;
int rc;
memset(&msg, 0, sizeof(msg));
/* create message to be sent */
msg.header.type = msg_type;
msg.header.size = cpu_to_le16(sizeof(struct comms_msg_header));
msg.header.magic = cpu_to_le32(HL_COMMS_MSG_MAGIC);
switch (msg_type) {
case HL_COMMS_RESET_CAUSE_TYPE:
msg.reset_cause = *(__u8 *) data;
break;
default:
dev_err(hdev->dev,
"Send COMMS message - invalid message type %u\n",
msg_type);
return -EINVAL;
}
rc = hl_fw_dynamic_request_descriptor(hdev, fw_loader,
sizeof(struct lkd_msg_comms));
if (rc)
return rc;
/* copy message to space allocated by FW */
rc = hl_fw_dynamic_copy_msg(hdev, &msg, fw_loader);
if (rc)
return rc;
rc = hl_fw_dynamic_send_protocol_cmd(hdev, fw_loader, COMMS_DATA_RDY,
0, true,
fw_loader->cpu_timeout);
if (rc)
return rc;
rc = hl_fw_dynamic_send_protocol_cmd(hdev, fw_loader, COMMS_EXEC,
0, true,
fw_loader->cpu_timeout);
if (rc)
return rc;
return 0;
}
/**
* hl_fw_dynamic_init_cpu - initialize the device CPU using dynamic protocol
*
* @hdev: pointer to the habanalabs device structure
* @fw_loader: managing structure for loading device's FW
*
* @return 0 on success, otherwise non-zero error code
*
* brief: the dynamic protocol is master (LKD) slave (FW CPU) protocol.
* the communication is done using registers:
* - LKD command register
* - FW status register
* the protocol is race free. this goal is achieved by splitting the requests
* and response to known synchronization points between the LKD and the FW.
* each response to LKD request is known and bound to a predefined timeout.
* in case of timeout expiration without the desired status from FW- the
* protocol (and hence the boot) will fail.
*/
static int hl_fw_dynamic_init_cpu(struct hl_device *hdev,
struct fw_load_mgr *fw_loader)
{
struct cpu_dyn_regs *dyn_regs;
int rc;
dev_info(hdev->dev,
"Loading %sfirmware to device, may take some time...\n",
hdev->asic_prop.fw_security_enabled ? "secured " : "");
/* initialize FW descriptor as invalid */
fw_loader->dynamic_loader.fw_desc_valid = false;
/*
* In this stage, "cpu_dyn_regs" contains only LKD's hard coded values!
* It will be updated from FW after hl_fw_dynamic_request_descriptor().
*/
dyn_regs = &fw_loader->dynamic_loader.comm_desc.cpu_dyn_regs;
rc = hl_fw_dynamic_send_protocol_cmd(hdev, fw_loader, COMMS_RST_STATE,
0, true,
fw_loader->cpu_timeout);
if (rc)
goto protocol_err;
if (hdev->reset_info.curr_reset_cause) {
rc = hl_fw_dynamic_send_msg(hdev, fw_loader,
HL_COMMS_RESET_CAUSE_TYPE, &hdev->reset_info.curr_reset_cause);
if (rc)
goto protocol_err;
/* Clear current reset cause */
hdev->reset_info.curr_reset_cause = HL_RESET_CAUSE_UNKNOWN;
}
if (!(hdev->fw_components & FW_TYPE_BOOT_CPU)) {
rc = hl_fw_dynamic_request_descriptor(hdev, fw_loader, 0);
if (rc)
goto protocol_err;
/* read preboot version */
return hl_fw_dynamic_read_device_fw_version(hdev, FW_COMP_PREBOOT,
fw_loader->dynamic_loader.comm_desc.cur_fw_ver);
}
/* load boot fit to FW */
rc = hl_fw_dynamic_load_image(hdev, fw_loader, FW_COMP_BOOT_FIT,
fw_loader->boot_fit_timeout);
if (rc) {
dev_err(hdev->dev, "failed to load boot fit\n");
goto protocol_err;
}
/*
* when testing FW load (without Linux) on PLDM we don't want to
* wait until boot fit is active as it may take several hours.
* instead, we load the bootfit and let it do all initialization in
* the background.
*/
if (hdev->pldm && !(hdev->fw_components & FW_TYPE_LINUX))
return 0;
rc = hl_fw_dynamic_wait_for_boot_fit_active(hdev, fw_loader);
if (rc)
goto protocol_err;
/* Enable DRAM scrambling before Linux boot and after successful
* UBoot
*/
hdev->asic_funcs->init_cpu_scrambler_dram(hdev);
if (!(hdev->fw_components & FW_TYPE_LINUX)) {
dev_info(hdev->dev, "Skip loading Linux F/W\n");
return 0;
}
if (fw_loader->skip_bmc) {
rc = hl_fw_dynamic_send_protocol_cmd(hdev, fw_loader,
COMMS_SKIP_BMC, 0,
true,
fw_loader->cpu_timeout);
if (rc) {
dev_err(hdev->dev, "failed to load boot fit\n");
goto protocol_err;
}
}
/* load Linux image to FW */
rc = hl_fw_dynamic_load_image(hdev, fw_loader, FW_COMP_LINUX,
fw_loader->cpu_timeout);
if (rc) {
dev_err(hdev->dev, "failed to load Linux\n");
goto protocol_err;
}
rc = hl_fw_dynamic_wait_for_linux_active(hdev, fw_loader);
if (rc)
goto protocol_err;
hl_fw_linux_update_state(hdev, le32_to_cpu(dyn_regs->cpu_boot_dev_sts0),
le32_to_cpu(dyn_regs->cpu_boot_dev_sts1));
hl_fw_dynamic_update_linux_interrupt_if(hdev);
return 0;
protocol_err:
if (fw_loader->dynamic_loader.fw_desc_valid)
fw_read_errors(hdev, le32_to_cpu(dyn_regs->cpu_boot_err0),
le32_to_cpu(dyn_regs->cpu_boot_err1),
le32_to_cpu(dyn_regs->cpu_boot_dev_sts0),
le32_to_cpu(dyn_regs->cpu_boot_dev_sts1));
return rc;
}
/**
* hl_fw_static_init_cpu - initialize the device CPU using static protocol
*
* @hdev: pointer to the habanalabs device structure
* @fw_loader: managing structure for loading device's FW
*
* @return 0 on success, otherwise non-zero error code
*/
static int hl_fw_static_init_cpu(struct hl_device *hdev,
struct fw_load_mgr *fw_loader)
{
u32 cpu_msg_status_reg, cpu_timeout, msg_to_cpu_reg, status;
u32 cpu_boot_dev_status0_reg, cpu_boot_dev_status1_reg;
struct static_fw_load_mgr *static_loader;
u32 cpu_boot_status_reg;
int rc;
if (!(hdev->fw_components & FW_TYPE_BOOT_CPU))
return 0;
/* init common loader parameters */
cpu_timeout = fw_loader->cpu_timeout;
/* init static loader parameters */
static_loader = &fw_loader->static_loader;
cpu_msg_status_reg = static_loader->cpu_cmd_status_to_host_reg;
msg_to_cpu_reg = static_loader->kmd_msg_to_cpu_reg;
cpu_boot_dev_status0_reg = static_loader->cpu_boot_dev_status0_reg;
cpu_boot_dev_status1_reg = static_loader->cpu_boot_dev_status1_reg;
cpu_boot_status_reg = static_loader->cpu_boot_status_reg;
dev_info(hdev->dev, "Going to wait for device boot (up to %lds)\n",
cpu_timeout / USEC_PER_SEC);
/* Wait for boot FIT request */
rc = hl_poll_timeout(
hdev,
cpu_boot_status_reg,
status,
status == CPU_BOOT_STATUS_WAITING_FOR_BOOT_FIT,
hdev->fw_poll_interval_usec,
fw_loader->boot_fit_timeout);
if (rc) {
dev_dbg(hdev->dev,
"No boot fit request received, resuming boot\n");
} else {
rc = hdev->asic_funcs->load_boot_fit_to_device(hdev);
if (rc)
goto out;
/* Clear device CPU message status */
WREG32(cpu_msg_status_reg, CPU_MSG_CLR);
/* Signal device CPU that boot loader is ready */
WREG32(msg_to_cpu_reg, KMD_MSG_FIT_RDY);
/* Poll for CPU device ack */
rc = hl_poll_timeout(
hdev,
cpu_msg_status_reg,
status,
status == CPU_MSG_OK,
hdev->fw_poll_interval_usec,
fw_loader->boot_fit_timeout);
if (rc) {
dev_err(hdev->dev,
"Timeout waiting for boot fit load ack\n");
goto out;
}
/* Clear message */
WREG32(msg_to_cpu_reg, KMD_MSG_NA);
}
/*
* Make sure CPU boot-loader is running
* Note that the CPU_BOOT_STATUS_SRAM_AVAIL is generally set by Linux
* yet there is a debug scenario in which we loading uboot (without Linux)
* which at later stage is relocated to DRAM. In this case we expect
* uboot to set the CPU_BOOT_STATUS_SRAM_AVAIL and so we add it to the
* poll flags
*/
rc = hl_poll_timeout(
hdev,
cpu_boot_status_reg,
status,
(status == CPU_BOOT_STATUS_DRAM_RDY) ||
(status == CPU_BOOT_STATUS_NIC_FW_RDY) ||
(status == CPU_BOOT_STATUS_READY_TO_BOOT) ||
(status == CPU_BOOT_STATUS_SRAM_AVAIL),
hdev->fw_poll_interval_usec,
cpu_timeout);
dev_dbg(hdev->dev, "uboot status = %d\n", status);
/* Read U-Boot version now in case we will later fail */
hl_fw_static_read_device_fw_version(hdev, FW_COMP_BOOT_FIT);
/* update state according to boot stage */
hl_fw_boot_fit_update_state(hdev, cpu_boot_dev_status0_reg,
cpu_boot_dev_status1_reg);
if (rc) {
detect_cpu_boot_status(hdev, status);
rc = -EIO;
goto out;
}
/* Enable DRAM scrambling before Linux boot and after successful
* UBoot
*/
hdev->asic_funcs->init_cpu_scrambler_dram(hdev);
if (!(hdev->fw_components & FW_TYPE_LINUX)) {
dev_info(hdev->dev, "Skip loading Linux F/W\n");
rc = 0;
goto out;
}
if (status == CPU_BOOT_STATUS_SRAM_AVAIL) {
rc = 0;
goto out;
}
dev_info(hdev->dev,
"Loading firmware to device, may take some time...\n");
rc = hdev->asic_funcs->load_firmware_to_device(hdev);
if (rc)
goto out;
if (fw_loader->skip_bmc) {
WREG32(msg_to_cpu_reg, KMD_MSG_SKIP_BMC);
rc = hl_poll_timeout(
hdev,
cpu_boot_status_reg,
status,
(status == CPU_BOOT_STATUS_BMC_WAITING_SKIPPED),
hdev->fw_poll_interval_usec,
cpu_timeout);
if (rc) {
dev_err(hdev->dev,
"Failed to get ACK on skipping BMC, %d\n",
status);
WREG32(msg_to_cpu_reg, KMD_MSG_NA);
rc = -EIO;
goto out;
}
}
WREG32(msg_to_cpu_reg, KMD_MSG_FIT_RDY);
rc = hl_poll_timeout(
hdev,
cpu_boot_status_reg,
status,
(status == CPU_BOOT_STATUS_SRAM_AVAIL),
hdev->fw_poll_interval_usec,
cpu_timeout);
/* Clear message */
WREG32(msg_to_cpu_reg, KMD_MSG_NA);
if (rc) {
if (status == CPU_BOOT_STATUS_FIT_CORRUPTED)
dev_err(hdev->dev,
"Device reports FIT image is corrupted\n");
else
dev_err(hdev->dev,
"Failed to load firmware to device, %d\n",
status);
rc = -EIO;
goto out;
}
rc = fw_read_errors(hdev, fw_loader->static_loader.boot_err0_reg,
fw_loader->static_loader.boot_err1_reg,
cpu_boot_dev_status0_reg,
cpu_boot_dev_status1_reg);
if (rc)
return rc;
hl_fw_linux_update_state(hdev, cpu_boot_dev_status0_reg,
cpu_boot_dev_status1_reg);
return 0;
out:
fw_read_errors(hdev, fw_loader->static_loader.boot_err0_reg,
fw_loader->static_loader.boot_err1_reg,
cpu_boot_dev_status0_reg,
cpu_boot_dev_status1_reg);
return rc;
}
/**
* hl_fw_init_cpu - initialize the device CPU
*
* @hdev: pointer to the habanalabs device structure
*
* @return 0 on success, otherwise non-zero error code
*
* perform necessary initializations for device's CPU. takes into account if
* init protocol is static or dynamic.
*/
int hl_fw_init_cpu(struct hl_device *hdev)
{
struct asic_fixed_properties *prop = &hdev->asic_prop;
struct fw_load_mgr *fw_loader = &hdev->fw_loader;
return prop->dynamic_fw_load ?
hl_fw_dynamic_init_cpu(hdev, fw_loader) :
hl_fw_static_init_cpu(hdev, fw_loader);
}
void hl_fw_set_pll_profile(struct hl_device *hdev)
{
hl_fw_set_frequency(hdev, hdev->asic_prop.clk_pll_index,
hdev->asic_prop.max_freq_value);
}
int hl_fw_get_clk_rate(struct hl_device *hdev, u32 *cur_clk, u32 *max_clk)
{
long value;
if (!hl_device_operational(hdev, NULL))
return -ENODEV;
if (!hdev->pdev) {
*cur_clk = 0;
*max_clk = 0;
return 0;
}
value = hl_fw_get_frequency(hdev, hdev->asic_prop.clk_pll_index, false);
if (value < 0) {
dev_err(hdev->dev, "Failed to retrieve device max clock %ld\n", value);
return value;
}
*max_clk = (value / 1000 / 1000);
value = hl_fw_get_frequency(hdev, hdev->asic_prop.clk_pll_index, true);
if (value < 0) {
dev_err(hdev->dev, "Failed to retrieve device current clock %ld\n", value);
return value;
}
*cur_clk = (value / 1000 / 1000);
return 0;
}
long hl_fw_get_frequency(struct hl_device *hdev, u32 pll_index, bool curr)
{
struct cpucp_packet pkt;
u32 used_pll_idx;
u64 result;
int rc;
rc = get_used_pll_index(hdev, pll_index, &used_pll_idx);
if (rc)
return rc;
memset(&pkt, 0, sizeof(pkt));
if (curr)
pkt.ctl = cpu_to_le32(CPUCP_PACKET_FREQUENCY_CURR_GET <<
CPUCP_PKT_CTL_OPCODE_SHIFT);
else
pkt.ctl = cpu_to_le32(CPUCP_PACKET_FREQUENCY_GET << CPUCP_PKT_CTL_OPCODE_SHIFT);
pkt.pll_index = cpu_to_le32((u32)used_pll_idx);
rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 0, &result);
if (rc) {
dev_err(hdev->dev, "Failed to get frequency of PLL %d, error %d\n",
used_pll_idx, rc);
return rc;
}
return (long) result;
}
void hl_fw_set_frequency(struct hl_device *hdev, u32 pll_index, u64 freq)
{
struct cpucp_packet pkt;
u32 used_pll_idx;
int rc;
rc = get_used_pll_index(hdev, pll_index, &used_pll_idx);
if (rc)
return;
memset(&pkt, 0, sizeof(pkt));
pkt.ctl = cpu_to_le32(CPUCP_PACKET_FREQUENCY_SET << CPUCP_PKT_CTL_OPCODE_SHIFT);
pkt.pll_index = cpu_to_le32((u32)used_pll_idx);
pkt.value = cpu_to_le64(freq);
rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 0, NULL);
if (rc)
dev_err(hdev->dev, "Failed to set frequency to PLL %d, error %d\n",
used_pll_idx, rc);
}
long hl_fw_get_max_power(struct hl_device *hdev)
{
struct cpucp_packet pkt;
u64 result;
int rc;
memset(&pkt, 0, sizeof(pkt));
pkt.ctl = cpu_to_le32(CPUCP_PACKET_MAX_POWER_GET << CPUCP_PKT_CTL_OPCODE_SHIFT);
rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 0, &result);
if (rc) {
dev_err(hdev->dev, "Failed to get max power, error %d\n", rc);
return rc;
}
return result;
}
void hl_fw_set_max_power(struct hl_device *hdev)
{
struct cpucp_packet pkt;
int rc;
/* TODO: remove this after simulator supports this packet */
if (!hdev->pdev)
return;
memset(&pkt, 0, sizeof(pkt));
pkt.ctl = cpu_to_le32(CPUCP_PACKET_MAX_POWER_SET << CPUCP_PKT_CTL_OPCODE_SHIFT);
pkt.value = cpu_to_le64(hdev->max_power);
rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 0, NULL);
if (rc)
dev_err(hdev->dev, "Failed to set max power, error %d\n", rc);
}
static int hl_fw_get_sec_attest_data(struct hl_device *hdev, u32 packet_id, void *data, u32 size,
u32 nonce, u32 timeout)
{
struct cpucp_packet pkt = {};
dma_addr_t req_dma_addr;
void *req_cpu_addr;
int rc;
req_cpu_addr = hl_cpu_accessible_dma_pool_alloc(hdev, size, &req_dma_addr);
if (!req_cpu_addr) {
dev_err(hdev->dev,
"Failed to allocate DMA memory for CPU-CP packet %u\n", packet_id);
return -ENOMEM;
}
memset(data, 0, size);
pkt.ctl = cpu_to_le32(packet_id << CPUCP_PKT_CTL_OPCODE_SHIFT);
pkt.addr = cpu_to_le64(req_dma_addr);
pkt.data_max_size = cpu_to_le32(size);
pkt.nonce = cpu_to_le32(nonce);
rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
timeout, NULL);
if (rc) {
dev_err(hdev->dev,
"Failed to handle CPU-CP pkt %u, error %d\n", packet_id, rc);
goto out;
}
memcpy(data, req_cpu_addr, size);
out:
hl_cpu_accessible_dma_pool_free(hdev, size, req_cpu_addr);
return rc;
}
int hl_fw_get_sec_attest_info(struct hl_device *hdev, struct cpucp_sec_attest_info *sec_attest_info,
u32 nonce)
{
return hl_fw_get_sec_attest_data(hdev, CPUCP_PACKET_SEC_ATTEST_GET, sec_attest_info,
sizeof(struct cpucp_sec_attest_info), nonce,
HL_CPUCP_SEC_ATTEST_INFO_TINEOUT_USEC);
}