458 lines
13 KiB
C
458 lines
13 KiB
C
// SPDX-License-Identifier: GPL-2.0 OR MIT
|
|
/*
|
|
* Copyright 2011 Red Hat Inc.
|
|
* Copyright 2023 Intel Corporation.
|
|
* All Rights Reserved.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the
|
|
* "Software"), to deal in the Software without restriction, including
|
|
* without limitation the rights to use, copy, modify, merge, publish,
|
|
* distribute, sub license, and/or sell copies of the Software, and to
|
|
* permit persons to whom the Software is furnished to do so, subject to
|
|
* the following conditions:
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
|
|
* THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
|
|
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
|
|
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
|
|
* USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
*
|
|
* The above copyright notice and this permission notice (including the
|
|
* next paragraph) shall be included in all copies or substantial portions
|
|
* of the Software.
|
|
*
|
|
*/
|
|
/* Algorithm:
|
|
*
|
|
* We store the last allocated bo in "hole", we always try to allocate
|
|
* after the last allocated bo. Principle is that in a linear GPU ring
|
|
* progression was is after last is the oldest bo we allocated and thus
|
|
* the first one that should no longer be in use by the GPU.
|
|
*
|
|
* If it's not the case we skip over the bo after last to the closest
|
|
* done bo if such one exist. If none exist and we are not asked to
|
|
* block we report failure to allocate.
|
|
*
|
|
* If we are asked to block we wait on all the oldest fence of all
|
|
* rings. We just wait for any of those fence to complete.
|
|
*/
|
|
|
|
#include <drm/drm_suballoc.h>
|
|
#include <drm/drm_print.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/wait.h>
|
|
#include <linux/dma-fence.h>
|
|
|
|
static void drm_suballoc_remove_locked(struct drm_suballoc *sa);
|
|
static void drm_suballoc_try_free(struct drm_suballoc_manager *sa_manager);
|
|
|
|
/**
|
|
* drm_suballoc_manager_init() - Initialise the drm_suballoc_manager
|
|
* @sa_manager: pointer to the sa_manager
|
|
* @size: number of bytes we want to suballocate
|
|
* @align: alignment for each suballocated chunk
|
|
*
|
|
* Prepares the suballocation manager for suballocations.
|
|
*/
|
|
void drm_suballoc_manager_init(struct drm_suballoc_manager *sa_manager,
|
|
size_t size, size_t align)
|
|
{
|
|
unsigned int i;
|
|
|
|
BUILD_BUG_ON(!is_power_of_2(DRM_SUBALLOC_MAX_QUEUES));
|
|
|
|
if (!align)
|
|
align = 1;
|
|
|
|
/* alignment must be a power of 2 */
|
|
if (WARN_ON_ONCE(align & (align - 1)))
|
|
align = roundup_pow_of_two(align);
|
|
|
|
init_waitqueue_head(&sa_manager->wq);
|
|
sa_manager->size = size;
|
|
sa_manager->align = align;
|
|
sa_manager->hole = &sa_manager->olist;
|
|
INIT_LIST_HEAD(&sa_manager->olist);
|
|
for (i = 0; i < DRM_SUBALLOC_MAX_QUEUES; ++i)
|
|
INIT_LIST_HEAD(&sa_manager->flist[i]);
|
|
}
|
|
EXPORT_SYMBOL(drm_suballoc_manager_init);
|
|
|
|
/**
|
|
* drm_suballoc_manager_fini() - Destroy the drm_suballoc_manager
|
|
* @sa_manager: pointer to the sa_manager
|
|
*
|
|
* Cleans up the suballocation manager after use. All fences added
|
|
* with drm_suballoc_free() must be signaled, or we cannot clean up
|
|
* the entire manager.
|
|
*/
|
|
void drm_suballoc_manager_fini(struct drm_suballoc_manager *sa_manager)
|
|
{
|
|
struct drm_suballoc *sa, *tmp;
|
|
|
|
if (!sa_manager->size)
|
|
return;
|
|
|
|
if (!list_empty(&sa_manager->olist)) {
|
|
sa_manager->hole = &sa_manager->olist;
|
|
drm_suballoc_try_free(sa_manager);
|
|
if (!list_empty(&sa_manager->olist))
|
|
DRM_ERROR("sa_manager is not empty, clearing anyway\n");
|
|
}
|
|
list_for_each_entry_safe(sa, tmp, &sa_manager->olist, olist) {
|
|
drm_suballoc_remove_locked(sa);
|
|
}
|
|
|
|
sa_manager->size = 0;
|
|
}
|
|
EXPORT_SYMBOL(drm_suballoc_manager_fini);
|
|
|
|
static void drm_suballoc_remove_locked(struct drm_suballoc *sa)
|
|
{
|
|
struct drm_suballoc_manager *sa_manager = sa->manager;
|
|
|
|
if (sa_manager->hole == &sa->olist)
|
|
sa_manager->hole = sa->olist.prev;
|
|
|
|
list_del_init(&sa->olist);
|
|
list_del_init(&sa->flist);
|
|
dma_fence_put(sa->fence);
|
|
kfree(sa);
|
|
}
|
|
|
|
static void drm_suballoc_try_free(struct drm_suballoc_manager *sa_manager)
|
|
{
|
|
struct drm_suballoc *sa, *tmp;
|
|
|
|
if (sa_manager->hole->next == &sa_manager->olist)
|
|
return;
|
|
|
|
sa = list_entry(sa_manager->hole->next, struct drm_suballoc, olist);
|
|
list_for_each_entry_safe_from(sa, tmp, &sa_manager->olist, olist) {
|
|
if (!sa->fence || !dma_fence_is_signaled(sa->fence))
|
|
return;
|
|
|
|
drm_suballoc_remove_locked(sa);
|
|
}
|
|
}
|
|
|
|
static size_t drm_suballoc_hole_soffset(struct drm_suballoc_manager *sa_manager)
|
|
{
|
|
struct list_head *hole = sa_manager->hole;
|
|
|
|
if (hole != &sa_manager->olist)
|
|
return list_entry(hole, struct drm_suballoc, olist)->eoffset;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static size_t drm_suballoc_hole_eoffset(struct drm_suballoc_manager *sa_manager)
|
|
{
|
|
struct list_head *hole = sa_manager->hole;
|
|
|
|
if (hole->next != &sa_manager->olist)
|
|
return list_entry(hole->next, struct drm_suballoc, olist)->soffset;
|
|
return sa_manager->size;
|
|
}
|
|
|
|
static bool drm_suballoc_try_alloc(struct drm_suballoc_manager *sa_manager,
|
|
struct drm_suballoc *sa,
|
|
size_t size, size_t align)
|
|
{
|
|
size_t soffset, eoffset, wasted;
|
|
|
|
soffset = drm_suballoc_hole_soffset(sa_manager);
|
|
eoffset = drm_suballoc_hole_eoffset(sa_manager);
|
|
wasted = round_up(soffset, align) - soffset;
|
|
|
|
if ((eoffset - soffset) >= (size + wasted)) {
|
|
soffset += wasted;
|
|
|
|
sa->manager = sa_manager;
|
|
sa->soffset = soffset;
|
|
sa->eoffset = soffset + size;
|
|
list_add(&sa->olist, sa_manager->hole);
|
|
INIT_LIST_HEAD(&sa->flist);
|
|
sa_manager->hole = &sa->olist;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool __drm_suballoc_event(struct drm_suballoc_manager *sa_manager,
|
|
size_t size, size_t align)
|
|
{
|
|
size_t soffset, eoffset, wasted;
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < DRM_SUBALLOC_MAX_QUEUES; ++i)
|
|
if (!list_empty(&sa_manager->flist[i]))
|
|
return true;
|
|
|
|
soffset = drm_suballoc_hole_soffset(sa_manager);
|
|
eoffset = drm_suballoc_hole_eoffset(sa_manager);
|
|
wasted = round_up(soffset, align) - soffset;
|
|
|
|
return ((eoffset - soffset) >= (size + wasted));
|
|
}
|
|
|
|
/**
|
|
* drm_suballoc_event() - Check if we can stop waiting
|
|
* @sa_manager: pointer to the sa_manager
|
|
* @size: number of bytes we want to allocate
|
|
* @align: alignment we need to match
|
|
*
|
|
* Return: true if either there is a fence we can wait for or
|
|
* enough free memory to satisfy the allocation directly.
|
|
* false otherwise.
|
|
*/
|
|
static bool drm_suballoc_event(struct drm_suballoc_manager *sa_manager,
|
|
size_t size, size_t align)
|
|
{
|
|
bool ret;
|
|
|
|
spin_lock(&sa_manager->wq.lock);
|
|
ret = __drm_suballoc_event(sa_manager, size, align);
|
|
spin_unlock(&sa_manager->wq.lock);
|
|
return ret;
|
|
}
|
|
|
|
static bool drm_suballoc_next_hole(struct drm_suballoc_manager *sa_manager,
|
|
struct dma_fence **fences,
|
|
unsigned int *tries)
|
|
{
|
|
struct drm_suballoc *best_bo = NULL;
|
|
unsigned int i, best_idx;
|
|
size_t soffset, best, tmp;
|
|
|
|
/* if hole points to the end of the buffer */
|
|
if (sa_manager->hole->next == &sa_manager->olist) {
|
|
/* try again with its beginning */
|
|
sa_manager->hole = &sa_manager->olist;
|
|
return true;
|
|
}
|
|
|
|
soffset = drm_suballoc_hole_soffset(sa_manager);
|
|
/* to handle wrap around we add sa_manager->size */
|
|
best = sa_manager->size * 2;
|
|
/* go over all fence list and try to find the closest sa
|
|
* of the current last
|
|
*/
|
|
for (i = 0; i < DRM_SUBALLOC_MAX_QUEUES; ++i) {
|
|
struct drm_suballoc *sa;
|
|
|
|
fences[i] = NULL;
|
|
|
|
if (list_empty(&sa_manager->flist[i]))
|
|
continue;
|
|
|
|
sa = list_first_entry(&sa_manager->flist[i],
|
|
struct drm_suballoc, flist);
|
|
|
|
if (!dma_fence_is_signaled(sa->fence)) {
|
|
fences[i] = sa->fence;
|
|
continue;
|
|
}
|
|
|
|
/* limit the number of tries each freelist gets */
|
|
if (tries[i] > 2)
|
|
continue;
|
|
|
|
tmp = sa->soffset;
|
|
if (tmp < soffset) {
|
|
/* wrap around, pretend it's after */
|
|
tmp += sa_manager->size;
|
|
}
|
|
tmp -= soffset;
|
|
if (tmp < best) {
|
|
/* this sa bo is the closest one */
|
|
best = tmp;
|
|
best_idx = i;
|
|
best_bo = sa;
|
|
}
|
|
}
|
|
|
|
if (best_bo) {
|
|
++tries[best_idx];
|
|
sa_manager->hole = best_bo->olist.prev;
|
|
|
|
/*
|
|
* We know that this one is signaled,
|
|
* so it's safe to remove it.
|
|
*/
|
|
drm_suballoc_remove_locked(best_bo);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* drm_suballoc_new() - Make a suballocation.
|
|
* @sa_manager: pointer to the sa_manager
|
|
* @size: number of bytes we want to suballocate.
|
|
* @gfp: gfp flags used for memory allocation. Typically GFP_KERNEL but
|
|
* the argument is provided for suballocations from reclaim context or
|
|
* where the caller wants to avoid pipelining rather than wait for
|
|
* reclaim.
|
|
* @intr: Whether to perform waits interruptible. This should typically
|
|
* always be true, unless the caller needs to propagate a
|
|
* non-interruptible context from above layers.
|
|
* @align: Alignment. Must not exceed the default manager alignment.
|
|
* If @align is zero, then the manager alignment is used.
|
|
*
|
|
* Try to make a suballocation of size @size, which will be rounded
|
|
* up to the alignment specified in specified in drm_suballoc_manager_init().
|
|
*
|
|
* Return: a new suballocated bo, or an ERR_PTR.
|
|
*/
|
|
struct drm_suballoc *
|
|
drm_suballoc_new(struct drm_suballoc_manager *sa_manager, size_t size,
|
|
gfp_t gfp, bool intr, size_t align)
|
|
{
|
|
struct dma_fence *fences[DRM_SUBALLOC_MAX_QUEUES];
|
|
unsigned int tries[DRM_SUBALLOC_MAX_QUEUES];
|
|
unsigned int count;
|
|
int i, r;
|
|
struct drm_suballoc *sa;
|
|
|
|
if (WARN_ON_ONCE(align > sa_manager->align))
|
|
return ERR_PTR(-EINVAL);
|
|
if (WARN_ON_ONCE(size > sa_manager->size || !size))
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
if (!align)
|
|
align = sa_manager->align;
|
|
|
|
sa = kmalloc(sizeof(*sa), gfp);
|
|
if (!sa)
|
|
return ERR_PTR(-ENOMEM);
|
|
sa->manager = sa_manager;
|
|
sa->fence = NULL;
|
|
INIT_LIST_HEAD(&sa->olist);
|
|
INIT_LIST_HEAD(&sa->flist);
|
|
|
|
spin_lock(&sa_manager->wq.lock);
|
|
do {
|
|
for (i = 0; i < DRM_SUBALLOC_MAX_QUEUES; ++i)
|
|
tries[i] = 0;
|
|
|
|
do {
|
|
drm_suballoc_try_free(sa_manager);
|
|
|
|
if (drm_suballoc_try_alloc(sa_manager, sa,
|
|
size, align)) {
|
|
spin_unlock(&sa_manager->wq.lock);
|
|
return sa;
|
|
}
|
|
|
|
/* see if we can skip over some allocations */
|
|
} while (drm_suballoc_next_hole(sa_manager, fences, tries));
|
|
|
|
for (i = 0, count = 0; i < DRM_SUBALLOC_MAX_QUEUES; ++i)
|
|
if (fences[i])
|
|
fences[count++] = dma_fence_get(fences[i]);
|
|
|
|
if (count) {
|
|
long t;
|
|
|
|
spin_unlock(&sa_manager->wq.lock);
|
|
t = dma_fence_wait_any_timeout(fences, count, intr,
|
|
MAX_SCHEDULE_TIMEOUT,
|
|
NULL);
|
|
for (i = 0; i < count; ++i)
|
|
dma_fence_put(fences[i]);
|
|
|
|
r = (t > 0) ? 0 : t;
|
|
spin_lock(&sa_manager->wq.lock);
|
|
} else if (intr) {
|
|
/* if we have nothing to wait for block */
|
|
r = wait_event_interruptible_locked
|
|
(sa_manager->wq,
|
|
__drm_suballoc_event(sa_manager, size, align));
|
|
} else {
|
|
spin_unlock(&sa_manager->wq.lock);
|
|
wait_event(sa_manager->wq,
|
|
drm_suballoc_event(sa_manager, size, align));
|
|
r = 0;
|
|
spin_lock(&sa_manager->wq.lock);
|
|
}
|
|
} while (!r);
|
|
|
|
spin_unlock(&sa_manager->wq.lock);
|
|
kfree(sa);
|
|
return ERR_PTR(r);
|
|
}
|
|
EXPORT_SYMBOL(drm_suballoc_new);
|
|
|
|
/**
|
|
* drm_suballoc_free - Free a suballocation
|
|
* @suballoc: pointer to the suballocation
|
|
* @fence: fence that signals when suballocation is idle
|
|
*
|
|
* Free the suballocation. The suballocation can be re-used after @fence signals.
|
|
*/
|
|
void drm_suballoc_free(struct drm_suballoc *suballoc,
|
|
struct dma_fence *fence)
|
|
{
|
|
struct drm_suballoc_manager *sa_manager;
|
|
|
|
if (!suballoc)
|
|
return;
|
|
|
|
sa_manager = suballoc->manager;
|
|
|
|
spin_lock(&sa_manager->wq.lock);
|
|
if (fence && !dma_fence_is_signaled(fence)) {
|
|
u32 idx;
|
|
|
|
suballoc->fence = dma_fence_get(fence);
|
|
idx = fence->context & (DRM_SUBALLOC_MAX_QUEUES - 1);
|
|
list_add_tail(&suballoc->flist, &sa_manager->flist[idx]);
|
|
} else {
|
|
drm_suballoc_remove_locked(suballoc);
|
|
}
|
|
wake_up_all_locked(&sa_manager->wq);
|
|
spin_unlock(&sa_manager->wq.lock);
|
|
}
|
|
EXPORT_SYMBOL(drm_suballoc_free);
|
|
|
|
#ifdef CONFIG_DEBUG_FS
|
|
void drm_suballoc_dump_debug_info(struct drm_suballoc_manager *sa_manager,
|
|
struct drm_printer *p,
|
|
unsigned long long suballoc_base)
|
|
{
|
|
struct drm_suballoc *i;
|
|
|
|
spin_lock(&sa_manager->wq.lock);
|
|
list_for_each_entry(i, &sa_manager->olist, olist) {
|
|
unsigned long long soffset = i->soffset;
|
|
unsigned long long eoffset = i->eoffset;
|
|
|
|
if (&i->olist == sa_manager->hole)
|
|
drm_puts(p, ">");
|
|
else
|
|
drm_puts(p, " ");
|
|
|
|
drm_printf(p, "[0x%010llx 0x%010llx] size %8lld",
|
|
suballoc_base + soffset, suballoc_base + eoffset,
|
|
eoffset - soffset);
|
|
|
|
if (i->fence)
|
|
drm_printf(p, " protected by 0x%016llx on context %llu",
|
|
(unsigned long long)i->fence->seqno,
|
|
(unsigned long long)i->fence->context);
|
|
|
|
drm_puts(p, "\n");
|
|
}
|
|
spin_unlock(&sa_manager->wq.lock);
|
|
}
|
|
EXPORT_SYMBOL(drm_suballoc_dump_debug_info);
|
|
#endif
|
|
MODULE_AUTHOR("Multiple");
|
|
MODULE_DESCRIPTION("Range suballocator helper");
|
|
MODULE_LICENSE("Dual MIT/GPL");
|