acrn-kernel/include/asm-parisc/dma.h

187 lines
5.8 KiB
C

/* $Id: dma.h,v 1.2 1999/04/27 00:46:18 deller Exp $
* linux/include/asm/dma.h: Defines for using and allocating dma channels.
* Written by Hennus Bergman, 1992.
* High DMA channel support & info by Hannu Savolainen
* and John Boyd, Nov. 1992.
* (c) Copyright 2000, Grant Grundler
*/
#ifndef _ASM_DMA_H
#define _ASM_DMA_H
#include <asm/io.h> /* need byte IO */
#include <asm/system.h>
#define dma_outb outb
#define dma_inb inb
/*
** DMA_CHUNK_SIZE is used by the SCSI mid-layer to break up
** (or rather not merge) DMAs into manageable chunks.
** On parisc, this is more of the software/tuning constraint
** rather than the HW. I/O MMU allocation algorithms can be
** faster with smaller sizes (to some degree).
*/
#define DMA_CHUNK_SIZE (BITS_PER_LONG*PAGE_SIZE)
/* The maximum address that we can perform a DMA transfer to on this platform
** New dynamic DMA interfaces should obsolete this....
*/
#define MAX_DMA_ADDRESS (~0UL)
/*
** We don't have DMA channels... well V-class does but the
** Dynamic DMA Mapping interface will support them... right? :^)
** Note: this is not relevant right now for PA-RISC, but we cannot
** leave this as undefined because some things (e.g. sound)
** won't compile :-(
*/
#define MAX_DMA_CHANNELS 8
#define DMA_MODE_READ 0x44 /* I/O to memory, no autoinit, increment, single mode */
#define DMA_MODE_WRITE 0x48 /* memory to I/O, no autoinit, increment, single mode */
#define DMA_MODE_CASCADE 0xC0 /* pass thru DREQ->HRQ, DACK<-HLDA only */
#define DMA_AUTOINIT 0x10
/* 8237 DMA controllers */
#define IO_DMA1_BASE 0x00 /* 8 bit slave DMA, channels 0..3 */
#define IO_DMA2_BASE 0xC0 /* 16 bit master DMA, ch 4(=slave input)..7 */
/* DMA controller registers */
#define DMA1_CMD_REG 0x08 /* command register (w) */
#define DMA1_STAT_REG 0x08 /* status register (r) */
#define DMA1_REQ_REG 0x09 /* request register (w) */
#define DMA1_MASK_REG 0x0A /* single-channel mask (w) */
#define DMA1_MODE_REG 0x0B /* mode register (w) */
#define DMA1_CLEAR_FF_REG 0x0C /* clear pointer flip-flop (w) */
#define DMA1_TEMP_REG 0x0D /* Temporary Register (r) */
#define DMA1_RESET_REG 0x0D /* Master Clear (w) */
#define DMA1_CLR_MASK_REG 0x0E /* Clear Mask */
#define DMA1_MASK_ALL_REG 0x0F /* all-channels mask (w) */
#define DMA1_EXT_MODE_REG (0x400 | DMA1_MODE_REG)
#define DMA2_CMD_REG 0xD0 /* command register (w) */
#define DMA2_STAT_REG 0xD0 /* status register (r) */
#define DMA2_REQ_REG 0xD2 /* request register (w) */
#define DMA2_MASK_REG 0xD4 /* single-channel mask (w) */
#define DMA2_MODE_REG 0xD6 /* mode register (w) */
#define DMA2_CLEAR_FF_REG 0xD8 /* clear pointer flip-flop (w) */
#define DMA2_TEMP_REG 0xDA /* Temporary Register (r) */
#define DMA2_RESET_REG 0xDA /* Master Clear (w) */
#define DMA2_CLR_MASK_REG 0xDC /* Clear Mask */
#define DMA2_MASK_ALL_REG 0xDE /* all-channels mask (w) */
#define DMA2_EXT_MODE_REG (0x400 | DMA2_MODE_REG)
static __inline__ unsigned long claim_dma_lock(void)
{
return 0;
}
static __inline__ void release_dma_lock(unsigned long flags)
{
}
/* Get DMA residue count. After a DMA transfer, this
* should return zero. Reading this while a DMA transfer is
* still in progress will return unpredictable results.
* If called before the channel has been used, it may return 1.
* Otherwise, it returns the number of _bytes_ left to transfer.
*
* Assumes DMA flip-flop is clear.
*/
static __inline__ int get_dma_residue(unsigned int dmanr)
{
unsigned int io_port = (dmanr<=3)? ((dmanr&3)<<1) + 1 + IO_DMA1_BASE
: ((dmanr&3)<<2) + 2 + IO_DMA2_BASE;
/* using short to get 16-bit wrap around */
unsigned short count;
count = 1 + dma_inb(io_port);
count += dma_inb(io_port) << 8;
return (dmanr<=3)? count : (count<<1);
}
/* enable/disable a specific DMA channel */
static __inline__ void enable_dma(unsigned int dmanr)
{
#ifdef CONFIG_SUPERIO
if (dmanr<=3)
dma_outb(dmanr, DMA1_MASK_REG);
else
dma_outb(dmanr & 3, DMA2_MASK_REG);
#endif
}
static __inline__ void disable_dma(unsigned int dmanr)
{
#ifdef CONFIG_SUPERIO
if (dmanr<=3)
dma_outb(dmanr | 4, DMA1_MASK_REG);
else
dma_outb((dmanr & 3) | 4, DMA2_MASK_REG);
#endif
}
/* reserve a DMA channel */
#define request_dma(dmanr, device_id) (0)
/* Clear the 'DMA Pointer Flip Flop'.
* Write 0 for LSB/MSB, 1 for MSB/LSB access.
* Use this once to initialize the FF to a known state.
* After that, keep track of it. :-)
* --- In order to do that, the DMA routines below should ---
* --- only be used while holding the DMA lock ! ---
*/
static __inline__ void clear_dma_ff(unsigned int dmanr)
{
}
/* set mode (above) for a specific DMA channel */
static __inline__ void set_dma_mode(unsigned int dmanr, char mode)
{
}
/* Set only the page register bits of the transfer address.
* This is used for successive transfers when we know the contents of
* the lower 16 bits of the DMA current address register, but a 64k boundary
* may have been crossed.
*/
static __inline__ void set_dma_page(unsigned int dmanr, char pagenr)
{
}
/* Set transfer address & page bits for specific DMA channel.
* Assumes dma flipflop is clear.
*/
static __inline__ void set_dma_addr(unsigned int dmanr, unsigned int a)
{
}
/* Set transfer size (max 64k for DMA1..3, 128k for DMA5..7) for
* a specific DMA channel.
* You must ensure the parameters are valid.
* NOTE: from a manual: "the number of transfers is one more
* than the initial word count"! This is taken into account.
* Assumes dma flip-flop is clear.
* NOTE 2: "count" represents _bytes_ and must be even for channels 5-7.
*/
static __inline__ void set_dma_count(unsigned int dmanr, unsigned int count)
{
}
#define free_dma(dmanr)
#ifdef CONFIG_PCI
extern int isa_dma_bridge_buggy;
#else
#define isa_dma_bridge_buggy (0)
#endif
#endif /* _ASM_DMA_H */