368 lines
11 KiB
C
368 lines
11 KiB
C
/*
|
|
* setup.c
|
|
*
|
|
* BRIEF MODULE DESCRIPTION
|
|
* Momentum Computer Ocelot (CP7000) - board dependent boot routines
|
|
*
|
|
* Copyright (C) 1996, 1997, 2001 Ralf Baechle
|
|
* Copyright (C) 2000 RidgeRun, Inc.
|
|
* Copyright (C) 2001 Red Hat, Inc.
|
|
* Copyright (C) 2002 Momentum Computer
|
|
*
|
|
* Author: RidgeRun, Inc.
|
|
* glonnon@ridgerun.com, skranz@ridgerun.com, stevej@ridgerun.com
|
|
*
|
|
* Copyright 2001 MontaVista Software Inc.
|
|
* Author: jsun@mvista.com or jsun@junsun.net
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License as published by the
|
|
* Free Software Foundation; either version 2 of the License, or (at your
|
|
* option) any later version.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
|
|
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
|
|
* NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
|
|
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
|
|
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program; if not, write to the Free Software Foundation, Inc.,
|
|
* 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
*
|
|
*/
|
|
#include <linux/init.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/types.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/timex.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <asm/time.h>
|
|
#include <asm/bootinfo.h>
|
|
#include <asm/page.h>
|
|
#include <asm/io.h>
|
|
#include <asm/irq.h>
|
|
#include <asm/pci.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/ptrace.h>
|
|
#include <asm/reboot.h>
|
|
#include <asm/traps.h>
|
|
#include <linux/bootmem.h>
|
|
#include <linux/initrd.h>
|
|
#include <asm/gt64120.h>
|
|
#include "ocelot_pld.h"
|
|
|
|
unsigned long gt64120_base = KSEG1ADDR(GT_DEF_BASE);
|
|
|
|
/* These functions are used for rebooting or halting the machine*/
|
|
extern void momenco_ocelot_restart(char *command);
|
|
extern void momenco_ocelot_halt(void);
|
|
extern void momenco_ocelot_power_off(void);
|
|
|
|
extern void gt64120_time_init(void);
|
|
extern void momenco_ocelot_irq_setup(void);
|
|
|
|
static char reset_reason;
|
|
|
|
#define ENTRYLO(x) ((pte_val(pfn_pte((x) >> PAGE_SHIFT, PAGE_KERNEL_UNCACHED)) >> 6)|1)
|
|
|
|
static void __init setup_l3cache(unsigned long size);
|
|
|
|
/* setup code for a handoff from a version 1 PMON 2000 PROM */
|
|
void PMON_v1_setup()
|
|
{
|
|
/* A wired TLB entry for the GT64120A and the serial port. The
|
|
GT64120A is going to be hit on every IRQ anyway - there's
|
|
absolutely no point in letting it be a random TLB entry, as
|
|
it'll just cause needless churning of the TLB. And we use
|
|
the other half for the serial port, which is just a PITA
|
|
otherwise :)
|
|
|
|
Device Physical Virtual
|
|
GT64120 Internal Regs 0x24000000 0xe0000000
|
|
UARTs (CS2) 0x2d000000 0xe0001000
|
|
*/
|
|
add_wired_entry(ENTRYLO(0x24000000), ENTRYLO(0x2D000000), 0xe0000000, PM_4K);
|
|
|
|
/* Also a temporary entry to let us talk to the Ocelot PLD and NVRAM
|
|
in the CS[012] region. We can't use ioremap() yet. The NVRAM
|
|
is a ST M48T37Y, which includes NVRAM, RTC, and Watchdog functions.
|
|
|
|
Ocelot PLD (CS0) 0x2c000000 0xe0020000
|
|
NVRAM 0x2c800000 0xe0030000
|
|
*/
|
|
|
|
add_temporary_entry(ENTRYLO(0x2C000000), ENTRYLO(0x2d000000), 0xe0020000, PM_64K);
|
|
|
|
/* Relocate the CS3/BootCS region */
|
|
GT_WRITE(GT_CS3BOOTLD_OFS, 0x2f000000 >> 21);
|
|
|
|
/* Relocate CS[012] */
|
|
GT_WRITE(GT_CS20LD_OFS, 0x2c000000 >> 21);
|
|
|
|
/* Relocate the GT64120A itself... */
|
|
GT_WRITE(GT_ISD_OFS, 0x24000000 >> 21);
|
|
mb();
|
|
gt64120_base = 0xe0000000;
|
|
|
|
/* ...and the PCI0 view of it. */
|
|
GT_WRITE(GT_PCI0_CFGADDR_OFS, 0x80000020);
|
|
GT_WRITE(GT_PCI0_CFGDATA_OFS, 0x24000000);
|
|
GT_WRITE(GT_PCI0_CFGADDR_OFS, 0x80000024);
|
|
GT_WRITE(GT_PCI0_CFGDATA_OFS, 0x24000001);
|
|
}
|
|
|
|
/* setup code for a handoff from a version 2 PMON 2000 PROM */
|
|
void PMON_v2_setup()
|
|
{
|
|
/* A wired TLB entry for the GT64120A and the serial port. The
|
|
GT64120A is going to be hit on every IRQ anyway - there's
|
|
absolutely no point in letting it be a random TLB entry, as
|
|
it'll just cause needless churning of the TLB. And we use
|
|
the other half for the serial port, which is just a PITA
|
|
otherwise :)
|
|
|
|
Device Physical Virtual
|
|
GT64120 Internal Regs 0xf4000000 0xe0000000
|
|
UARTs (CS2) 0xfd000000 0xe0001000
|
|
*/
|
|
add_wired_entry(ENTRYLO(0xf4000000), ENTRYLO(0xfD000000), 0xe0000000, PM_4K);
|
|
|
|
/* Also a temporary entry to let us talk to the Ocelot PLD and NVRAM
|
|
in the CS[012] region. We can't use ioremap() yet. The NVRAM
|
|
is a ST M48T37Y, which includes NVRAM, RTC, and Watchdog functions.
|
|
|
|
Ocelot PLD (CS0) 0xfc000000 0xe0020000
|
|
NVRAM 0xfc800000 0xe0030000
|
|
*/
|
|
add_temporary_entry(ENTRYLO(0xfC000000), ENTRYLO(0xfd000000), 0xe0020000, PM_64K);
|
|
|
|
gt64120_base = 0xe0000000;
|
|
}
|
|
|
|
void __init plat_setup(void)
|
|
{
|
|
void (*l3func)(unsigned long)=KSEG1ADDR(&setup_l3cache);
|
|
unsigned int tmpword;
|
|
|
|
board_time_init = gt64120_time_init;
|
|
|
|
_machine_restart = momenco_ocelot_restart;
|
|
_machine_halt = momenco_ocelot_halt;
|
|
_machine_power_off = momenco_ocelot_power_off;
|
|
|
|
/*
|
|
* initrd_start = (ulong)ocelot_initrd_start;
|
|
* initrd_end = (ulong)ocelot_initrd_start + (ulong)ocelot_initrd_size;
|
|
* initrd_below_start_ok = 1;
|
|
*/
|
|
|
|
/* do handoff reconfiguration */
|
|
if (gt64120_base == KSEG1ADDR(GT_DEF_BASE))
|
|
PMON_v1_setup();
|
|
else
|
|
PMON_v2_setup();
|
|
|
|
/* Turn off the Bit-Error LED */
|
|
OCELOT_PLD_WRITE(0x80, INTCLR);
|
|
|
|
/* Relocate all the PCI1 stuff, not that we use it */
|
|
GT_WRITE(GT_PCI1IOLD_OFS, 0x30000000 >> 21);
|
|
GT_WRITE(GT_PCI1M0LD_OFS, 0x32000000 >> 21);
|
|
GT_WRITE(GT_PCI1M1LD_OFS, 0x34000000 >> 21);
|
|
|
|
/* Relocate PCI0 I/O and Mem0 */
|
|
GT_WRITE(GT_PCI0IOLD_OFS, 0x20000000 >> 21);
|
|
GT_WRITE(GT_PCI0M0LD_OFS, 0x22000000 >> 21);
|
|
|
|
/* Relocate PCI0 Mem1 */
|
|
GT_WRITE(GT_PCI0M1LD_OFS, 0x36000000 >> 21);
|
|
|
|
/* For the initial programming, we assume 512MB configuration */
|
|
/* Relocate the CPU's view of the RAM... */
|
|
GT_WRITE(GT_SCS10LD_OFS, 0);
|
|
GT_WRITE(GT_SCS10HD_OFS, 0x0fe00000 >> 21);
|
|
GT_WRITE(GT_SCS32LD_OFS, 0x10000000 >> 21);
|
|
GT_WRITE(GT_SCS32HD_OFS, 0x0fe00000 >> 21);
|
|
|
|
GT_WRITE(GT_SCS1LD_OFS, 0xff);
|
|
GT_WRITE(GT_SCS1HD_OFS, 0x00);
|
|
GT_WRITE(GT_SCS0LD_OFS, 0);
|
|
GT_WRITE(GT_SCS0HD_OFS, 0xff);
|
|
GT_WRITE(GT_SCS3LD_OFS, 0xff);
|
|
GT_WRITE(GT_SCS3HD_OFS, 0x00);
|
|
GT_WRITE(GT_SCS2LD_OFS, 0);
|
|
GT_WRITE(GT_SCS2HD_OFS, 0xff);
|
|
|
|
/* ...and the PCI0 view of it. */
|
|
GT_WRITE(GT_PCI0_CFGADDR_OFS, 0x80000010);
|
|
GT_WRITE(GT_PCI0_CFGDATA_OFS, 0x00000000);
|
|
GT_WRITE(GT_PCI0_CFGADDR_OFS, 0x80000014);
|
|
GT_WRITE(GT_PCI0_CFGDATA_OFS, 0x10000000);
|
|
GT_WRITE(GT_PCI0_BS_SCS10_OFS, 0x0ffff000);
|
|
GT_WRITE(GT_PCI0_BS_SCS32_OFS, 0x0ffff000);
|
|
|
|
tmpword = OCELOT_PLD_READ(BOARDREV);
|
|
if (tmpword < 26)
|
|
printk("Momenco Ocelot: Board Assembly Rev. %c\n", 'A'+tmpword);
|
|
else
|
|
printk("Momenco Ocelot: Board Assembly Revision #0x%x\n", tmpword);
|
|
|
|
tmpword = OCELOT_PLD_READ(PLD1_ID);
|
|
printk("PLD 1 ID: %d.%d\n", tmpword>>4, tmpword&15);
|
|
tmpword = OCELOT_PLD_READ(PLD2_ID);
|
|
printk("PLD 2 ID: %d.%d\n", tmpword>>4, tmpword&15);
|
|
tmpword = OCELOT_PLD_READ(RESET_STATUS);
|
|
printk("Reset reason: 0x%x\n", tmpword);
|
|
reset_reason = tmpword;
|
|
OCELOT_PLD_WRITE(0xff, RESET_STATUS);
|
|
|
|
tmpword = OCELOT_PLD_READ(BOARD_STATUS);
|
|
printk("Board Status register: 0x%02x\n", tmpword);
|
|
printk(" - User jumper: %s\n", (tmpword & 0x80)?"installed":"absent");
|
|
printk(" - Boot flash write jumper: %s\n", (tmpword&0x40)?"installed":"absent");
|
|
printk(" - Tulip PHY %s connected\n", (tmpword&0x10)?"is":"not");
|
|
printk(" - L3 Cache size: %d MiB\n", (1<<((tmpword&12) >> 2))&~1);
|
|
printk(" - SDRAM size: %d MiB\n", 1<<(6+(tmpword&3)));
|
|
|
|
if (tmpword&12)
|
|
l3func((1<<(((tmpword&12) >> 2)+20)));
|
|
|
|
switch(tmpword &3) {
|
|
case 3:
|
|
/* 512MiB */
|
|
/* Decoders are allready set -- just add the
|
|
* appropriate region */
|
|
add_memory_region( 0x40<<20, 0xC0<<20, BOOT_MEM_RAM);
|
|
add_memory_region(0x100<<20, 0x100<<20, BOOT_MEM_RAM);
|
|
break;
|
|
case 2:
|
|
/* 256MiB -- two banks of 128MiB */
|
|
GT_WRITE(GT_SCS10HD_OFS, 0x07e00000 >> 21);
|
|
GT_WRITE(GT_SCS32LD_OFS, 0x08000000 >> 21);
|
|
GT_WRITE(GT_SCS32HD_OFS, 0x0fe00000 >> 21);
|
|
|
|
GT_WRITE(GT_SCS0HD_OFS, 0x7f);
|
|
GT_WRITE(GT_SCS2LD_OFS, 0x80);
|
|
GT_WRITE(GT_SCS2HD_OFS, 0xff);
|
|
|
|
/* reconfigure the PCI0 interface view of memory */
|
|
GT_WRITE(GT_PCI0_CFGADDR_OFS, 0x80000014);
|
|
GT_WRITE(GT_PCI0_CFGDATA_OFS, 0x08000000);
|
|
GT_WRITE(GT_PCI0_BS_SCS10_OFS, 0x0ffff000);
|
|
GT_WRITE(GT_PCI0_BS_SCS32_OFS, 0x0ffff000);
|
|
|
|
add_memory_region(0x40<<20, 0x40<<20, BOOT_MEM_RAM);
|
|
add_memory_region(0x80<<20, 0x80<<20, BOOT_MEM_RAM);
|
|
break;
|
|
case 1:
|
|
/* 128MiB -- 64MiB per bank */
|
|
GT_WRITE(GT_SCS10HD_OFS, 0x03e00000 >> 21);
|
|
GT_WRITE(GT_SCS32LD_OFS, 0x04000000 >> 21);
|
|
GT_WRITE(GT_SCS32HD_OFS, 0x07e00000 >> 21);
|
|
|
|
GT_WRITE(GT_SCS0HD_OFS, 0x3f);
|
|
GT_WRITE(GT_SCS2LD_OFS, 0x40);
|
|
GT_WRITE(GT_SCS2HD_OFS, 0x7f);
|
|
|
|
/* reconfigure the PCI0 interface view of memory */
|
|
GT_WRITE(GT_PCI0_CFGADDR_OFS, 0x80000014);
|
|
GT_WRITE(GT_PCI0_CFGDATA_OFS, 0x04000000);
|
|
GT_WRITE(GT_PCI0_BS_SCS10_OFS, 0x03fff000);
|
|
GT_WRITE(GT_PCI0_BS_SCS32_OFS, 0x03fff000);
|
|
|
|
/* add the appropriate region */
|
|
add_memory_region(0x40<<20, 0x40<<20, BOOT_MEM_RAM);
|
|
break;
|
|
case 0:
|
|
/* 64MiB */
|
|
GT_WRITE(GT_SCS10HD_OFS, 0x01e00000 >> 21);
|
|
GT_WRITE(GT_SCS32LD_OFS, 0x02000000 >> 21);
|
|
GT_WRITE(GT_SCS32HD_OFS, 0x03e00000 >> 21);
|
|
|
|
GT_WRITE(GT_SCS0HD_OFS, 0x1f);
|
|
GT_WRITE(GT_SCS2LD_OFS, 0x20);
|
|
GT_WRITE(GT_SCS2HD_OFS, 0x3f);
|
|
|
|
/* reconfigure the PCI0 interface view of memory */
|
|
GT_WRITE(GT_PCI0_CFGADDR_OFS, 0x80000014);
|
|
GT_WRITE(GT_PCI0_CFGDATA_OFS, 0x04000000);
|
|
GT_WRITE(GT_PCI0_BS_SCS10_OFS, 0x01fff000);
|
|
GT_WRITE(GT_PCI0_BS_SCS32_OFS, 0x01fff000);
|
|
|
|
break;
|
|
}
|
|
|
|
/* Fix up the DiskOnChip mapping */
|
|
GT_WRITE(GT_DEV_B3_OFS, 0xfef73);
|
|
}
|
|
|
|
extern int rm7k_tcache_enabled;
|
|
/*
|
|
* This runs in KSEG1. See the verbiage in rm7k.c::probe_scache()
|
|
*/
|
|
#define Page_Invalidate_T 0x16
|
|
static void __init setup_l3cache(unsigned long size)
|
|
{
|
|
int register i;
|
|
unsigned long tmp;
|
|
|
|
printk("Enabling L3 cache...");
|
|
|
|
/* Enable the L3 cache in the GT64120A's CPU Configuration register */
|
|
tmp = GT_READ(GT_CPU_OFS);
|
|
GT_WRITE(GT_CPU_OFS, tmp | (1<<14));
|
|
|
|
/* Enable the L3 cache in the CPU */
|
|
set_c0_config(1<<12 /* CONF_TE */);
|
|
|
|
/* Clear the cache */
|
|
write_c0_taglo(0);
|
|
write_c0_taghi(0);
|
|
|
|
for (i=0; i < size; i+= 4096) {
|
|
__asm__ __volatile__ (
|
|
".set noreorder\n\t"
|
|
".set mips3\n\t"
|
|
"cache %1, (%0)\n\t"
|
|
".set mips0\n\t"
|
|
".set reorder"
|
|
:
|
|
: "r" (KSEG0ADDR(i)),
|
|
"i" (Page_Invalidate_T));
|
|
}
|
|
|
|
/* Let the RM7000 MM code know that the tertiary cache is enabled */
|
|
rm7k_tcache_enabled = 1;
|
|
|
|
printk("Done\n");
|
|
}
|
|
|
|
|
|
/* This needs to be one of the first initcalls, because no I/O port access
|
|
can work before this */
|
|
|
|
static int io_base_ioremap(void)
|
|
{
|
|
void *io_remap_range = ioremap(GT_PCI_IO_BASE, GT_PCI_IO_SIZE);
|
|
|
|
if (!io_remap_range) {
|
|
panic("Could not ioremap I/O port range");
|
|
}
|
|
set_io_port_base(io_remap_range - GT_PCI_IO_BASE);
|
|
|
|
return 0;
|
|
}
|
|
|
|
module_init(io_base_ioremap);
|