474 lines
9.8 KiB
C
474 lines
9.8 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
*
|
|
* Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved.
|
|
*
|
|
*/
|
|
|
|
#include <linux/fs.h>
|
|
|
|
#include "debug.h"
|
|
#include "ntfs.h"
|
|
#include "ntfs_fs.h"
|
|
|
|
/*
|
|
* al_is_valid_le
|
|
*
|
|
* Return: True if @le is valid.
|
|
*/
|
|
static inline bool al_is_valid_le(const struct ntfs_inode *ni,
|
|
struct ATTR_LIST_ENTRY *le)
|
|
{
|
|
if (!le || !ni->attr_list.le || !ni->attr_list.size)
|
|
return false;
|
|
|
|
return PtrOffset(ni->attr_list.le, le) + le16_to_cpu(le->size) <=
|
|
ni->attr_list.size;
|
|
}
|
|
|
|
void al_destroy(struct ntfs_inode *ni)
|
|
{
|
|
run_close(&ni->attr_list.run);
|
|
kfree(ni->attr_list.le);
|
|
ni->attr_list.le = NULL;
|
|
ni->attr_list.size = 0;
|
|
ni->attr_list.dirty = false;
|
|
}
|
|
|
|
/*
|
|
* ntfs_load_attr_list
|
|
*
|
|
* This method makes sure that the ATTRIB list, if present,
|
|
* has been properly set up.
|
|
*/
|
|
int ntfs_load_attr_list(struct ntfs_inode *ni, struct ATTRIB *attr)
|
|
{
|
|
int err;
|
|
size_t lsize;
|
|
void *le = NULL;
|
|
|
|
if (ni->attr_list.size)
|
|
return 0;
|
|
|
|
if (!attr->non_res) {
|
|
lsize = le32_to_cpu(attr->res.data_size);
|
|
/* attr is resident: lsize < record_size (1K or 4K) */
|
|
le = kvmalloc(al_aligned(lsize), GFP_KERNEL);
|
|
if (!le) {
|
|
err = -ENOMEM;
|
|
goto out;
|
|
}
|
|
memcpy(le, resident_data(attr), lsize);
|
|
} else if (attr->nres.svcn) {
|
|
err = -EINVAL;
|
|
goto out;
|
|
} else {
|
|
u16 run_off = le16_to_cpu(attr->nres.run_off);
|
|
|
|
lsize = le64_to_cpu(attr->nres.data_size);
|
|
|
|
run_init(&ni->attr_list.run);
|
|
|
|
if (run_off > le32_to_cpu(attr->size)) {
|
|
err = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
err = run_unpack_ex(&ni->attr_list.run, ni->mi.sbi, ni->mi.rno,
|
|
0, le64_to_cpu(attr->nres.evcn), 0,
|
|
Add2Ptr(attr, run_off),
|
|
le32_to_cpu(attr->size) - run_off);
|
|
if (err < 0)
|
|
goto out;
|
|
|
|
/* attr is nonresident.
|
|
* The worst case:
|
|
* 1T (2^40) extremely fragmented file.
|
|
* cluster = 4K (2^12) => 2^28 fragments
|
|
* 2^9 fragments per one record => 2^19 records
|
|
* 2^5 bytes of ATTR_LIST_ENTRY per one record => 2^24 bytes.
|
|
*
|
|
* the result is 16M bytes per attribute list.
|
|
* Use kvmalloc to allocate in range [several Kbytes - dozen Mbytes]
|
|
*/
|
|
le = kvmalloc(al_aligned(lsize), GFP_KERNEL);
|
|
if (!le) {
|
|
err = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
err = ntfs_read_run_nb(ni->mi.sbi, &ni->attr_list.run, 0, le,
|
|
lsize, NULL);
|
|
if (err)
|
|
goto out;
|
|
}
|
|
|
|
ni->attr_list.size = lsize;
|
|
ni->attr_list.le = le;
|
|
|
|
return 0;
|
|
|
|
out:
|
|
ni->attr_list.le = le;
|
|
al_destroy(ni);
|
|
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* al_enumerate
|
|
*
|
|
* Return:
|
|
* * The next list le.
|
|
* * If @le is NULL then return the first le.
|
|
*/
|
|
struct ATTR_LIST_ENTRY *al_enumerate(struct ntfs_inode *ni,
|
|
struct ATTR_LIST_ENTRY *le)
|
|
{
|
|
size_t off;
|
|
u16 sz;
|
|
|
|
if (!le) {
|
|
le = ni->attr_list.le;
|
|
} else {
|
|
sz = le16_to_cpu(le->size);
|
|
if (sz < sizeof(struct ATTR_LIST_ENTRY)) {
|
|
/* Impossible 'cause we should not return such le. */
|
|
return NULL;
|
|
}
|
|
le = Add2Ptr(le, sz);
|
|
}
|
|
|
|
/* Check boundary. */
|
|
off = PtrOffset(ni->attr_list.le, le);
|
|
if (off + sizeof(struct ATTR_LIST_ENTRY) > ni->attr_list.size) {
|
|
/* The regular end of list. */
|
|
return NULL;
|
|
}
|
|
|
|
sz = le16_to_cpu(le->size);
|
|
|
|
/* Check le for errors. */
|
|
if (sz < sizeof(struct ATTR_LIST_ENTRY) ||
|
|
off + sz > ni->attr_list.size ||
|
|
sz < le->name_off + le->name_len * sizeof(short)) {
|
|
return NULL;
|
|
}
|
|
|
|
return le;
|
|
}
|
|
|
|
/*
|
|
* al_find_le
|
|
*
|
|
* Find the first le in the list which matches type, name and VCN.
|
|
*
|
|
* Return: NULL if not found.
|
|
*/
|
|
struct ATTR_LIST_ENTRY *al_find_le(struct ntfs_inode *ni,
|
|
struct ATTR_LIST_ENTRY *le,
|
|
const struct ATTRIB *attr)
|
|
{
|
|
CLST svcn = attr_svcn(attr);
|
|
|
|
return al_find_ex(ni, le, attr->type, attr_name(attr), attr->name_len,
|
|
&svcn);
|
|
}
|
|
|
|
/*
|
|
* al_find_ex
|
|
*
|
|
* Find the first le in the list which matches type, name and VCN.
|
|
*
|
|
* Return: NULL if not found.
|
|
*/
|
|
struct ATTR_LIST_ENTRY *al_find_ex(struct ntfs_inode *ni,
|
|
struct ATTR_LIST_ENTRY *le,
|
|
enum ATTR_TYPE type, const __le16 *name,
|
|
u8 name_len, const CLST *vcn)
|
|
{
|
|
struct ATTR_LIST_ENTRY *ret = NULL;
|
|
u32 type_in = le32_to_cpu(type);
|
|
|
|
while ((le = al_enumerate(ni, le))) {
|
|
u64 le_vcn;
|
|
int diff = le32_to_cpu(le->type) - type_in;
|
|
|
|
/* List entries are sorted by type, name and VCN. */
|
|
if (diff < 0)
|
|
continue;
|
|
|
|
if (diff > 0)
|
|
return ret;
|
|
|
|
if (le->name_len != name_len)
|
|
continue;
|
|
|
|
le_vcn = le64_to_cpu(le->vcn);
|
|
if (!le_vcn) {
|
|
/*
|
|
* Compare entry names only for entry with vcn == 0.
|
|
*/
|
|
diff = ntfs_cmp_names(le_name(le), name_len, name,
|
|
name_len, ni->mi.sbi->upcase,
|
|
true);
|
|
if (diff < 0)
|
|
continue;
|
|
|
|
if (diff > 0)
|
|
return ret;
|
|
}
|
|
|
|
if (!vcn)
|
|
return le;
|
|
|
|
if (*vcn == le_vcn)
|
|
return le;
|
|
|
|
if (*vcn < le_vcn)
|
|
return ret;
|
|
|
|
ret = le;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* al_find_le_to_insert
|
|
*
|
|
* Find the first list entry which matches type, name and VCN.
|
|
*/
|
|
static struct ATTR_LIST_ENTRY *al_find_le_to_insert(struct ntfs_inode *ni,
|
|
enum ATTR_TYPE type,
|
|
const __le16 *name,
|
|
u8 name_len, CLST vcn)
|
|
{
|
|
struct ATTR_LIST_ENTRY *le = NULL, *prev;
|
|
u32 type_in = le32_to_cpu(type);
|
|
|
|
/* List entries are sorted by type, name and VCN. */
|
|
while ((le = al_enumerate(ni, prev = le))) {
|
|
int diff = le32_to_cpu(le->type) - type_in;
|
|
|
|
if (diff < 0)
|
|
continue;
|
|
|
|
if (diff > 0)
|
|
return le;
|
|
|
|
if (!le->vcn) {
|
|
/*
|
|
* Compare entry names only for entry with vcn == 0.
|
|
*/
|
|
diff = ntfs_cmp_names(le_name(le), le->name_len, name,
|
|
name_len, ni->mi.sbi->upcase,
|
|
true);
|
|
if (diff < 0)
|
|
continue;
|
|
|
|
if (diff > 0)
|
|
return le;
|
|
}
|
|
|
|
if (le64_to_cpu(le->vcn) >= vcn)
|
|
return le;
|
|
}
|
|
|
|
return prev ? Add2Ptr(prev, le16_to_cpu(prev->size)) : ni->attr_list.le;
|
|
}
|
|
|
|
/*
|
|
* al_add_le
|
|
*
|
|
* Add an "attribute list entry" to the list.
|
|
*/
|
|
int al_add_le(struct ntfs_inode *ni, enum ATTR_TYPE type, const __le16 *name,
|
|
u8 name_len, CLST svcn, __le16 id, const struct MFT_REF *ref,
|
|
struct ATTR_LIST_ENTRY **new_le)
|
|
{
|
|
int err;
|
|
struct ATTRIB *attr;
|
|
struct ATTR_LIST_ENTRY *le;
|
|
size_t off;
|
|
u16 sz;
|
|
size_t asize, new_asize, old_size;
|
|
u64 new_size;
|
|
typeof(ni->attr_list) *al = &ni->attr_list;
|
|
|
|
/*
|
|
* Compute the size of the new 'le'
|
|
*/
|
|
sz = le_size(name_len);
|
|
old_size = al->size;
|
|
new_size = old_size + sz;
|
|
asize = al_aligned(old_size);
|
|
new_asize = al_aligned(new_size);
|
|
|
|
/* Scan forward to the point at which the new 'le' should be inserted. */
|
|
le = al_find_le_to_insert(ni, type, name, name_len, svcn);
|
|
off = PtrOffset(al->le, le);
|
|
|
|
if (new_size > asize) {
|
|
void *ptr = kmalloc(new_asize, GFP_NOFS);
|
|
|
|
if (!ptr)
|
|
return -ENOMEM;
|
|
|
|
memcpy(ptr, al->le, off);
|
|
memcpy(Add2Ptr(ptr, off + sz), le, old_size - off);
|
|
le = Add2Ptr(ptr, off);
|
|
kfree(al->le);
|
|
al->le = ptr;
|
|
} else {
|
|
memmove(Add2Ptr(le, sz), le, old_size - off);
|
|
}
|
|
*new_le = le;
|
|
|
|
al->size = new_size;
|
|
|
|
le->type = type;
|
|
le->size = cpu_to_le16(sz);
|
|
le->name_len = name_len;
|
|
le->name_off = offsetof(struct ATTR_LIST_ENTRY, name);
|
|
le->vcn = cpu_to_le64(svcn);
|
|
le->ref = *ref;
|
|
le->id = id;
|
|
memcpy(le->name, name, sizeof(short) * name_len);
|
|
|
|
err = attr_set_size(ni, ATTR_LIST, NULL, 0, &al->run, new_size,
|
|
&new_size, true, &attr);
|
|
if (err) {
|
|
/* Undo memmove above. */
|
|
memmove(le, Add2Ptr(le, sz), old_size - off);
|
|
al->size = old_size;
|
|
return err;
|
|
}
|
|
|
|
al->dirty = true;
|
|
|
|
if (attr && attr->non_res) {
|
|
err = ntfs_sb_write_run(ni->mi.sbi, &al->run, 0, al->le,
|
|
al->size, 0);
|
|
if (err)
|
|
return err;
|
|
al->dirty = false;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* al_remove_le - Remove @le from attribute list.
|
|
*/
|
|
bool al_remove_le(struct ntfs_inode *ni, struct ATTR_LIST_ENTRY *le)
|
|
{
|
|
u16 size;
|
|
size_t off;
|
|
typeof(ni->attr_list) *al = &ni->attr_list;
|
|
|
|
if (!al_is_valid_le(ni, le))
|
|
return false;
|
|
|
|
/* Save on stack the size of 'le' */
|
|
size = le16_to_cpu(le->size);
|
|
off = PtrOffset(al->le, le);
|
|
|
|
memmove(le, Add2Ptr(le, size), al->size - (off + size));
|
|
|
|
al->size -= size;
|
|
al->dirty = true;
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* al_delete_le - Delete first le from the list which matches its parameters.
|
|
*/
|
|
bool al_delete_le(struct ntfs_inode *ni, enum ATTR_TYPE type, CLST vcn,
|
|
const __le16 *name, size_t name_len,
|
|
const struct MFT_REF *ref)
|
|
{
|
|
u16 size;
|
|
struct ATTR_LIST_ENTRY *le;
|
|
size_t off;
|
|
typeof(ni->attr_list) *al = &ni->attr_list;
|
|
|
|
/* Scan forward to the first le that matches the input. */
|
|
le = al_find_ex(ni, NULL, type, name, name_len, &vcn);
|
|
if (!le)
|
|
return false;
|
|
|
|
off = PtrOffset(al->le, le);
|
|
|
|
next:
|
|
if (off >= al->size)
|
|
return false;
|
|
if (le->type != type)
|
|
return false;
|
|
if (le->name_len != name_len)
|
|
return false;
|
|
if (name_len && ntfs_cmp_names(le_name(le), name_len, name, name_len,
|
|
ni->mi.sbi->upcase, true))
|
|
return false;
|
|
if (le64_to_cpu(le->vcn) != vcn)
|
|
return false;
|
|
|
|
/*
|
|
* The caller specified a segment reference, so we have to
|
|
* scan through the matching entries until we find that segment
|
|
* reference or we run of matching entries.
|
|
*/
|
|
if (ref && memcmp(ref, &le->ref, sizeof(*ref))) {
|
|
off += le16_to_cpu(le->size);
|
|
le = Add2Ptr(al->le, off);
|
|
goto next;
|
|
}
|
|
|
|
/* Save on stack the size of 'le'. */
|
|
size = le16_to_cpu(le->size);
|
|
/* Delete the le. */
|
|
memmove(le, Add2Ptr(le, size), al->size - (off + size));
|
|
|
|
al->size -= size;
|
|
al->dirty = true;
|
|
|
|
return true;
|
|
}
|
|
|
|
int al_update(struct ntfs_inode *ni, int sync)
|
|
{
|
|
int err;
|
|
struct ATTRIB *attr;
|
|
typeof(ni->attr_list) *al = &ni->attr_list;
|
|
|
|
if (!al->dirty || !al->size)
|
|
return 0;
|
|
|
|
/*
|
|
* Attribute list increased on demand in al_add_le.
|
|
* Attribute list decreased here.
|
|
*/
|
|
err = attr_set_size(ni, ATTR_LIST, NULL, 0, &al->run, al->size, NULL,
|
|
false, &attr);
|
|
if (err)
|
|
goto out;
|
|
|
|
if (!attr->non_res) {
|
|
memcpy(resident_data(attr), al->le, al->size);
|
|
} else {
|
|
err = ntfs_sb_write_run(ni->mi.sbi, &al->run, 0, al->le,
|
|
al->size, sync);
|
|
if (err)
|
|
goto out;
|
|
|
|
attr->nres.valid_size = attr->nres.data_size;
|
|
}
|
|
|
|
ni->mi.dirty = true;
|
|
al->dirty = false;
|
|
|
|
out:
|
|
return err;
|
|
}
|