2129 lines
60 KiB
C
2129 lines
60 KiB
C
/*
|
|
* File: mca.c
|
|
* Purpose: Generic MCA handling layer
|
|
*
|
|
* Copyright (C) 2003 Hewlett-Packard Co
|
|
* David Mosberger-Tang <davidm@hpl.hp.com>
|
|
*
|
|
* Copyright (C) 2002 Dell Inc.
|
|
* Copyright (C) Matt Domsch <Matt_Domsch@dell.com>
|
|
*
|
|
* Copyright (C) 2002 Intel
|
|
* Copyright (C) Jenna Hall <jenna.s.hall@intel.com>
|
|
*
|
|
* Copyright (C) 2001 Intel
|
|
* Copyright (C) Fred Lewis <frederick.v.lewis@intel.com>
|
|
*
|
|
* Copyright (C) 2000 Intel
|
|
* Copyright (C) Chuck Fleckenstein <cfleck@co.intel.com>
|
|
*
|
|
* Copyright (C) 1999, 2004-2008 Silicon Graphics, Inc.
|
|
* Copyright (C) Vijay Chander <vijay@engr.sgi.com>
|
|
*
|
|
* Copyright (C) 2006 FUJITSU LIMITED
|
|
* Copyright (C) Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
|
|
*
|
|
* 2000-03-29 Chuck Fleckenstein <cfleck@co.intel.com>
|
|
* Fixed PAL/SAL update issues, began MCA bug fixes, logging issues,
|
|
* added min save state dump, added INIT handler.
|
|
*
|
|
* 2001-01-03 Fred Lewis <frederick.v.lewis@intel.com>
|
|
* Added setup of CMCI and CPEI IRQs, logging of corrected platform
|
|
* errors, completed code for logging of corrected & uncorrected
|
|
* machine check errors, and updated for conformance with Nov. 2000
|
|
* revision of the SAL 3.0 spec.
|
|
*
|
|
* 2002-01-04 Jenna Hall <jenna.s.hall@intel.com>
|
|
* Aligned MCA stack to 16 bytes, added platform vs. CPU error flag,
|
|
* set SAL default return values, changed error record structure to
|
|
* linked list, added init call to sal_get_state_info_size().
|
|
*
|
|
* 2002-03-25 Matt Domsch <Matt_Domsch@dell.com>
|
|
* GUID cleanups.
|
|
*
|
|
* 2003-04-15 David Mosberger-Tang <davidm@hpl.hp.com>
|
|
* Added INIT backtrace support.
|
|
*
|
|
* 2003-12-08 Keith Owens <kaos@sgi.com>
|
|
* smp_call_function() must not be called from interrupt context
|
|
* (can deadlock on tasklist_lock).
|
|
* Use keventd to call smp_call_function().
|
|
*
|
|
* 2004-02-01 Keith Owens <kaos@sgi.com>
|
|
* Avoid deadlock when using printk() for MCA and INIT records.
|
|
* Delete all record printing code, moved to salinfo_decode in user
|
|
* space. Mark variables and functions static where possible.
|
|
* Delete dead variables and functions. Reorder to remove the need
|
|
* for forward declarations and to consolidate related code.
|
|
*
|
|
* 2005-08-12 Keith Owens <kaos@sgi.com>
|
|
* Convert MCA/INIT handlers to use per event stacks and SAL/OS
|
|
* state.
|
|
*
|
|
* 2005-10-07 Keith Owens <kaos@sgi.com>
|
|
* Add notify_die() hooks.
|
|
*
|
|
* 2006-09-15 Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
|
|
* Add printing support for MCA/INIT.
|
|
*
|
|
* 2007-04-27 Russ Anderson <rja@sgi.com>
|
|
* Support multiple cpus going through OS_MCA in the same event.
|
|
*/
|
|
#include <linux/jiffies.h>
|
|
#include <linux/types.h>
|
|
#include <linux/init.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/bootmem.h>
|
|
#include <linux/acpi.h>
|
|
#include <linux/timer.h>
|
|
#include <linux/module.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/workqueue.h>
|
|
#include <linux/cpumask.h>
|
|
#include <linux/kdebug.h>
|
|
#include <linux/cpu.h>
|
|
|
|
#include <asm/delay.h>
|
|
#include <asm/machvec.h>
|
|
#include <asm/meminit.h>
|
|
#include <asm/page.h>
|
|
#include <asm/ptrace.h>
|
|
#include <asm/system.h>
|
|
#include <asm/sal.h>
|
|
#include <asm/mca.h>
|
|
#include <asm/kexec.h>
|
|
|
|
#include <asm/irq.h>
|
|
#include <asm/hw_irq.h>
|
|
#include <asm/tlb.h>
|
|
|
|
#include "mca_drv.h"
|
|
#include "entry.h"
|
|
|
|
#if defined(IA64_MCA_DEBUG_INFO)
|
|
# define IA64_MCA_DEBUG(fmt...) printk(fmt)
|
|
#else
|
|
# define IA64_MCA_DEBUG(fmt...)
|
|
#endif
|
|
|
|
#define NOTIFY_INIT(event, regs, arg, spin) \
|
|
do { \
|
|
if ((notify_die((event), "INIT", (regs), (arg), 0, 0) \
|
|
== NOTIFY_STOP) && ((spin) == 1)) \
|
|
ia64_mca_spin(__func__); \
|
|
} while (0)
|
|
|
|
#define NOTIFY_MCA(event, regs, arg, spin) \
|
|
do { \
|
|
if ((notify_die((event), "MCA", (regs), (arg), 0, 0) \
|
|
== NOTIFY_STOP) && ((spin) == 1)) \
|
|
ia64_mca_spin(__func__); \
|
|
} while (0)
|
|
|
|
/* Used by mca_asm.S */
|
|
DEFINE_PER_CPU(u64, ia64_mca_data); /* == __per_cpu_mca[smp_processor_id()] */
|
|
DEFINE_PER_CPU(u64, ia64_mca_per_cpu_pte); /* PTE to map per-CPU area */
|
|
DEFINE_PER_CPU(u64, ia64_mca_pal_pte); /* PTE to map PAL code */
|
|
DEFINE_PER_CPU(u64, ia64_mca_pal_base); /* vaddr PAL code granule */
|
|
DEFINE_PER_CPU(u64, ia64_mca_tr_reload); /* Flag for TR reload */
|
|
|
|
unsigned long __per_cpu_mca[NR_CPUS];
|
|
|
|
/* In mca_asm.S */
|
|
extern void ia64_os_init_dispatch_monarch (void);
|
|
extern void ia64_os_init_dispatch_slave (void);
|
|
|
|
static int monarch_cpu = -1;
|
|
|
|
static ia64_mc_info_t ia64_mc_info;
|
|
|
|
#define MAX_CPE_POLL_INTERVAL (15*60*HZ) /* 15 minutes */
|
|
#define MIN_CPE_POLL_INTERVAL (2*60*HZ) /* 2 minutes */
|
|
#define CMC_POLL_INTERVAL (1*60*HZ) /* 1 minute */
|
|
#define CPE_HISTORY_LENGTH 5
|
|
#define CMC_HISTORY_LENGTH 5
|
|
|
|
#ifdef CONFIG_ACPI
|
|
static struct timer_list cpe_poll_timer;
|
|
#endif
|
|
static struct timer_list cmc_poll_timer;
|
|
/*
|
|
* This variable tells whether we are currently in polling mode.
|
|
* Start with this in the wrong state so we won't play w/ timers
|
|
* before the system is ready.
|
|
*/
|
|
static int cmc_polling_enabled = 1;
|
|
|
|
/*
|
|
* Clearing this variable prevents CPE polling from getting activated
|
|
* in mca_late_init. Use it if your system doesn't provide a CPEI,
|
|
* but encounters problems retrieving CPE logs. This should only be
|
|
* necessary for debugging.
|
|
*/
|
|
static int cpe_poll_enabled = 1;
|
|
|
|
extern void salinfo_log_wakeup(int type, u8 *buffer, u64 size, int irqsafe);
|
|
|
|
static int mca_init __initdata;
|
|
|
|
/*
|
|
* limited & delayed printing support for MCA/INIT handler
|
|
*/
|
|
|
|
#define mprintk(fmt...) ia64_mca_printk(fmt)
|
|
|
|
#define MLOGBUF_SIZE (512+256*NR_CPUS)
|
|
#define MLOGBUF_MSGMAX 256
|
|
static char mlogbuf[MLOGBUF_SIZE];
|
|
static DEFINE_SPINLOCK(mlogbuf_wlock); /* mca context only */
|
|
static DEFINE_SPINLOCK(mlogbuf_rlock); /* normal context only */
|
|
static unsigned long mlogbuf_start;
|
|
static unsigned long mlogbuf_end;
|
|
static unsigned int mlogbuf_finished = 0;
|
|
static unsigned long mlogbuf_timestamp = 0;
|
|
|
|
static int loglevel_save = -1;
|
|
#define BREAK_LOGLEVEL(__console_loglevel) \
|
|
oops_in_progress = 1; \
|
|
if (loglevel_save < 0) \
|
|
loglevel_save = __console_loglevel; \
|
|
__console_loglevel = 15;
|
|
|
|
#define RESTORE_LOGLEVEL(__console_loglevel) \
|
|
if (loglevel_save >= 0) { \
|
|
__console_loglevel = loglevel_save; \
|
|
loglevel_save = -1; \
|
|
} \
|
|
mlogbuf_finished = 0; \
|
|
oops_in_progress = 0;
|
|
|
|
/*
|
|
* Push messages into buffer, print them later if not urgent.
|
|
*/
|
|
void ia64_mca_printk(const char *fmt, ...)
|
|
{
|
|
va_list args;
|
|
int printed_len;
|
|
char temp_buf[MLOGBUF_MSGMAX];
|
|
char *p;
|
|
|
|
va_start(args, fmt);
|
|
printed_len = vscnprintf(temp_buf, sizeof(temp_buf), fmt, args);
|
|
va_end(args);
|
|
|
|
/* Copy the output into mlogbuf */
|
|
if (oops_in_progress) {
|
|
/* mlogbuf was abandoned, use printk directly instead. */
|
|
printk(temp_buf);
|
|
} else {
|
|
spin_lock(&mlogbuf_wlock);
|
|
for (p = temp_buf; *p; p++) {
|
|
unsigned long next = (mlogbuf_end + 1) % MLOGBUF_SIZE;
|
|
if (next != mlogbuf_start) {
|
|
mlogbuf[mlogbuf_end] = *p;
|
|
mlogbuf_end = next;
|
|
} else {
|
|
/* buffer full */
|
|
break;
|
|
}
|
|
}
|
|
mlogbuf[mlogbuf_end] = '\0';
|
|
spin_unlock(&mlogbuf_wlock);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(ia64_mca_printk);
|
|
|
|
/*
|
|
* Print buffered messages.
|
|
* NOTE: call this after returning normal context. (ex. from salinfod)
|
|
*/
|
|
void ia64_mlogbuf_dump(void)
|
|
{
|
|
char temp_buf[MLOGBUF_MSGMAX];
|
|
char *p;
|
|
unsigned long index;
|
|
unsigned long flags;
|
|
unsigned int printed_len;
|
|
|
|
/* Get output from mlogbuf */
|
|
while (mlogbuf_start != mlogbuf_end) {
|
|
temp_buf[0] = '\0';
|
|
p = temp_buf;
|
|
printed_len = 0;
|
|
|
|
spin_lock_irqsave(&mlogbuf_rlock, flags);
|
|
|
|
index = mlogbuf_start;
|
|
while (index != mlogbuf_end) {
|
|
*p = mlogbuf[index];
|
|
index = (index + 1) % MLOGBUF_SIZE;
|
|
if (!*p)
|
|
break;
|
|
p++;
|
|
if (++printed_len >= MLOGBUF_MSGMAX - 1)
|
|
break;
|
|
}
|
|
*p = '\0';
|
|
if (temp_buf[0])
|
|
printk(temp_buf);
|
|
mlogbuf_start = index;
|
|
|
|
mlogbuf_timestamp = 0;
|
|
spin_unlock_irqrestore(&mlogbuf_rlock, flags);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(ia64_mlogbuf_dump);
|
|
|
|
/*
|
|
* Call this if system is going to down or if immediate flushing messages to
|
|
* console is required. (ex. recovery was failed, crash dump is going to be
|
|
* invoked, long-wait rendezvous etc.)
|
|
* NOTE: this should be called from monarch.
|
|
*/
|
|
static void ia64_mlogbuf_finish(int wait)
|
|
{
|
|
BREAK_LOGLEVEL(console_loglevel);
|
|
|
|
spin_lock_init(&mlogbuf_rlock);
|
|
ia64_mlogbuf_dump();
|
|
printk(KERN_EMERG "mlogbuf_finish: printing switched to urgent mode, "
|
|
"MCA/INIT might be dodgy or fail.\n");
|
|
|
|
if (!wait)
|
|
return;
|
|
|
|
/* wait for console */
|
|
printk("Delaying for 5 seconds...\n");
|
|
udelay(5*1000000);
|
|
|
|
mlogbuf_finished = 1;
|
|
}
|
|
|
|
/*
|
|
* Print buffered messages from INIT context.
|
|
*/
|
|
static void ia64_mlogbuf_dump_from_init(void)
|
|
{
|
|
if (mlogbuf_finished)
|
|
return;
|
|
|
|
if (mlogbuf_timestamp &&
|
|
time_before(jiffies, mlogbuf_timestamp + 30 * HZ)) {
|
|
printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT "
|
|
" and the system seems to be messed up.\n");
|
|
ia64_mlogbuf_finish(0);
|
|
return;
|
|
}
|
|
|
|
if (!spin_trylock(&mlogbuf_rlock)) {
|
|
printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT. "
|
|
"Generated messages other than stack dump will be "
|
|
"buffered to mlogbuf and will be printed later.\n");
|
|
printk(KERN_ERR "INIT: If messages would not printed after "
|
|
"this INIT, wait 30sec and assert INIT again.\n");
|
|
if (!mlogbuf_timestamp)
|
|
mlogbuf_timestamp = jiffies;
|
|
return;
|
|
}
|
|
spin_unlock(&mlogbuf_rlock);
|
|
ia64_mlogbuf_dump();
|
|
}
|
|
|
|
static void inline
|
|
ia64_mca_spin(const char *func)
|
|
{
|
|
if (monarch_cpu == smp_processor_id())
|
|
ia64_mlogbuf_finish(0);
|
|
mprintk(KERN_EMERG "%s: spinning here, not returning to SAL\n", func);
|
|
while (1)
|
|
cpu_relax();
|
|
}
|
|
/*
|
|
* IA64_MCA log support
|
|
*/
|
|
#define IA64_MAX_LOGS 2 /* Double-buffering for nested MCAs */
|
|
#define IA64_MAX_LOG_TYPES 4 /* MCA, INIT, CMC, CPE */
|
|
|
|
typedef struct ia64_state_log_s
|
|
{
|
|
spinlock_t isl_lock;
|
|
int isl_index;
|
|
unsigned long isl_count;
|
|
ia64_err_rec_t *isl_log[IA64_MAX_LOGS]; /* need space to store header + error log */
|
|
} ia64_state_log_t;
|
|
|
|
static ia64_state_log_t ia64_state_log[IA64_MAX_LOG_TYPES];
|
|
|
|
#define IA64_LOG_ALLOCATE(it, size) \
|
|
{ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)] = \
|
|
(ia64_err_rec_t *)alloc_bootmem(size); \
|
|
ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)] = \
|
|
(ia64_err_rec_t *)alloc_bootmem(size);}
|
|
#define IA64_LOG_LOCK_INIT(it) spin_lock_init(&ia64_state_log[it].isl_lock)
|
|
#define IA64_LOG_LOCK(it) spin_lock_irqsave(&ia64_state_log[it].isl_lock, s)
|
|
#define IA64_LOG_UNLOCK(it) spin_unlock_irqrestore(&ia64_state_log[it].isl_lock,s)
|
|
#define IA64_LOG_NEXT_INDEX(it) ia64_state_log[it].isl_index
|
|
#define IA64_LOG_CURR_INDEX(it) 1 - ia64_state_log[it].isl_index
|
|
#define IA64_LOG_INDEX_INC(it) \
|
|
{ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index; \
|
|
ia64_state_log[it].isl_count++;}
|
|
#define IA64_LOG_INDEX_DEC(it) \
|
|
ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index
|
|
#define IA64_LOG_NEXT_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)]))
|
|
#define IA64_LOG_CURR_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)]))
|
|
#define IA64_LOG_COUNT(it) ia64_state_log[it].isl_count
|
|
|
|
/*
|
|
* ia64_log_init
|
|
* Reset the OS ia64 log buffer
|
|
* Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
|
|
* Outputs : None
|
|
*/
|
|
static void __init
|
|
ia64_log_init(int sal_info_type)
|
|
{
|
|
u64 max_size = 0;
|
|
|
|
IA64_LOG_NEXT_INDEX(sal_info_type) = 0;
|
|
IA64_LOG_LOCK_INIT(sal_info_type);
|
|
|
|
// SAL will tell us the maximum size of any error record of this type
|
|
max_size = ia64_sal_get_state_info_size(sal_info_type);
|
|
if (!max_size)
|
|
/* alloc_bootmem() doesn't like zero-sized allocations! */
|
|
return;
|
|
|
|
// set up OS data structures to hold error info
|
|
IA64_LOG_ALLOCATE(sal_info_type, max_size);
|
|
memset(IA64_LOG_CURR_BUFFER(sal_info_type), 0, max_size);
|
|
memset(IA64_LOG_NEXT_BUFFER(sal_info_type), 0, max_size);
|
|
}
|
|
|
|
/*
|
|
* ia64_log_get
|
|
*
|
|
* Get the current MCA log from SAL and copy it into the OS log buffer.
|
|
*
|
|
* Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
|
|
* irq_safe whether you can use printk at this point
|
|
* Outputs : size (total record length)
|
|
* *buffer (ptr to error record)
|
|
*
|
|
*/
|
|
static u64
|
|
ia64_log_get(int sal_info_type, u8 **buffer, int irq_safe)
|
|
{
|
|
sal_log_record_header_t *log_buffer;
|
|
u64 total_len = 0;
|
|
unsigned long s;
|
|
|
|
IA64_LOG_LOCK(sal_info_type);
|
|
|
|
/* Get the process state information */
|
|
log_buffer = IA64_LOG_NEXT_BUFFER(sal_info_type);
|
|
|
|
total_len = ia64_sal_get_state_info(sal_info_type, (u64 *)log_buffer);
|
|
|
|
if (total_len) {
|
|
IA64_LOG_INDEX_INC(sal_info_type);
|
|
IA64_LOG_UNLOCK(sal_info_type);
|
|
if (irq_safe) {
|
|
IA64_MCA_DEBUG("%s: SAL error record type %d retrieved. Record length = %ld\n",
|
|
__func__, sal_info_type, total_len);
|
|
}
|
|
*buffer = (u8 *) log_buffer;
|
|
return total_len;
|
|
} else {
|
|
IA64_LOG_UNLOCK(sal_info_type);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* ia64_mca_log_sal_error_record
|
|
*
|
|
* This function retrieves a specified error record type from SAL
|
|
* and wakes up any processes waiting for error records.
|
|
*
|
|
* Inputs : sal_info_type (Type of error record MCA/CMC/CPE)
|
|
* FIXME: remove MCA and irq_safe.
|
|
*/
|
|
static void
|
|
ia64_mca_log_sal_error_record(int sal_info_type)
|
|
{
|
|
u8 *buffer;
|
|
sal_log_record_header_t *rh;
|
|
u64 size;
|
|
int irq_safe = sal_info_type != SAL_INFO_TYPE_MCA;
|
|
#ifdef IA64_MCA_DEBUG_INFO
|
|
static const char * const rec_name[] = { "MCA", "INIT", "CMC", "CPE" };
|
|
#endif
|
|
|
|
size = ia64_log_get(sal_info_type, &buffer, irq_safe);
|
|
if (!size)
|
|
return;
|
|
|
|
salinfo_log_wakeup(sal_info_type, buffer, size, irq_safe);
|
|
|
|
if (irq_safe)
|
|
IA64_MCA_DEBUG("CPU %d: SAL log contains %s error record\n",
|
|
smp_processor_id(),
|
|
sal_info_type < ARRAY_SIZE(rec_name) ? rec_name[sal_info_type] : "UNKNOWN");
|
|
|
|
/* Clear logs from corrected errors in case there's no user-level logger */
|
|
rh = (sal_log_record_header_t *)buffer;
|
|
if (rh->severity == sal_log_severity_corrected)
|
|
ia64_sal_clear_state_info(sal_info_type);
|
|
}
|
|
|
|
/*
|
|
* search_mca_table
|
|
* See if the MCA surfaced in an instruction range
|
|
* that has been tagged as recoverable.
|
|
*
|
|
* Inputs
|
|
* first First address range to check
|
|
* last Last address range to check
|
|
* ip Instruction pointer, address we are looking for
|
|
*
|
|
* Return value:
|
|
* 1 on Success (in the table)/ 0 on Failure (not in the table)
|
|
*/
|
|
int
|
|
search_mca_table (const struct mca_table_entry *first,
|
|
const struct mca_table_entry *last,
|
|
unsigned long ip)
|
|
{
|
|
const struct mca_table_entry *curr;
|
|
u64 curr_start, curr_end;
|
|
|
|
curr = first;
|
|
while (curr <= last) {
|
|
curr_start = (u64) &curr->start_addr + curr->start_addr;
|
|
curr_end = (u64) &curr->end_addr + curr->end_addr;
|
|
|
|
if ((ip >= curr_start) && (ip <= curr_end)) {
|
|
return 1;
|
|
}
|
|
curr++;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Given an address, look for it in the mca tables. */
|
|
int mca_recover_range(unsigned long addr)
|
|
{
|
|
extern struct mca_table_entry __start___mca_table[];
|
|
extern struct mca_table_entry __stop___mca_table[];
|
|
|
|
return search_mca_table(__start___mca_table, __stop___mca_table-1, addr);
|
|
}
|
|
EXPORT_SYMBOL_GPL(mca_recover_range);
|
|
|
|
#ifdef CONFIG_ACPI
|
|
|
|
int cpe_vector = -1;
|
|
int ia64_cpe_irq = -1;
|
|
|
|
static irqreturn_t
|
|
ia64_mca_cpe_int_handler (int cpe_irq, void *arg)
|
|
{
|
|
static unsigned long cpe_history[CPE_HISTORY_LENGTH];
|
|
static int index;
|
|
static DEFINE_SPINLOCK(cpe_history_lock);
|
|
|
|
IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
|
|
__func__, cpe_irq, smp_processor_id());
|
|
|
|
/* SAL spec states this should run w/ interrupts enabled */
|
|
local_irq_enable();
|
|
|
|
spin_lock(&cpe_history_lock);
|
|
if (!cpe_poll_enabled && cpe_vector >= 0) {
|
|
|
|
int i, count = 1; /* we know 1 happened now */
|
|
unsigned long now = jiffies;
|
|
|
|
for (i = 0; i < CPE_HISTORY_LENGTH; i++) {
|
|
if (now - cpe_history[i] <= HZ)
|
|
count++;
|
|
}
|
|
|
|
IA64_MCA_DEBUG(KERN_INFO "CPE threshold %d/%d\n", count, CPE_HISTORY_LENGTH);
|
|
if (count >= CPE_HISTORY_LENGTH) {
|
|
|
|
cpe_poll_enabled = 1;
|
|
spin_unlock(&cpe_history_lock);
|
|
disable_irq_nosync(local_vector_to_irq(IA64_CPE_VECTOR));
|
|
|
|
/*
|
|
* Corrected errors will still be corrected, but
|
|
* make sure there's a log somewhere that indicates
|
|
* something is generating more than we can handle.
|
|
*/
|
|
printk(KERN_WARNING "WARNING: Switching to polling CPE handler; error records may be lost\n");
|
|
|
|
mod_timer(&cpe_poll_timer, jiffies + MIN_CPE_POLL_INTERVAL);
|
|
|
|
/* lock already released, get out now */
|
|
goto out;
|
|
} else {
|
|
cpe_history[index++] = now;
|
|
if (index == CPE_HISTORY_LENGTH)
|
|
index = 0;
|
|
}
|
|
}
|
|
spin_unlock(&cpe_history_lock);
|
|
out:
|
|
/* Get the CPE error record and log it */
|
|
ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CPE);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
#endif /* CONFIG_ACPI */
|
|
|
|
#ifdef CONFIG_ACPI
|
|
/*
|
|
* ia64_mca_register_cpev
|
|
*
|
|
* Register the corrected platform error vector with SAL.
|
|
*
|
|
* Inputs
|
|
* cpev Corrected Platform Error Vector number
|
|
*
|
|
* Outputs
|
|
* None
|
|
*/
|
|
void
|
|
ia64_mca_register_cpev (int cpev)
|
|
{
|
|
/* Register the CPE interrupt vector with SAL */
|
|
struct ia64_sal_retval isrv;
|
|
|
|
isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_CPE_INT, SAL_MC_PARAM_MECHANISM_INT, cpev, 0, 0);
|
|
if (isrv.status) {
|
|
printk(KERN_ERR "Failed to register Corrected Platform "
|
|
"Error interrupt vector with SAL (status %ld)\n", isrv.status);
|
|
return;
|
|
}
|
|
|
|
IA64_MCA_DEBUG("%s: corrected platform error "
|
|
"vector %#x registered\n", __func__, cpev);
|
|
}
|
|
#endif /* CONFIG_ACPI */
|
|
|
|
/*
|
|
* ia64_mca_cmc_vector_setup
|
|
*
|
|
* Setup the corrected machine check vector register in the processor.
|
|
* (The interrupt is masked on boot. ia64_mca_late_init unmask this.)
|
|
* This function is invoked on a per-processor basis.
|
|
*
|
|
* Inputs
|
|
* None
|
|
*
|
|
* Outputs
|
|
* None
|
|
*/
|
|
void __cpuinit
|
|
ia64_mca_cmc_vector_setup (void)
|
|
{
|
|
cmcv_reg_t cmcv;
|
|
|
|
cmcv.cmcv_regval = 0;
|
|
cmcv.cmcv_mask = 1; /* Mask/disable interrupt at first */
|
|
cmcv.cmcv_vector = IA64_CMC_VECTOR;
|
|
ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
|
|
|
|
IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x registered.\n",
|
|
__func__, smp_processor_id(), IA64_CMC_VECTOR);
|
|
|
|
IA64_MCA_DEBUG("%s: CPU %d CMCV = %#016lx\n",
|
|
__func__, smp_processor_id(), ia64_getreg(_IA64_REG_CR_CMCV));
|
|
}
|
|
|
|
/*
|
|
* ia64_mca_cmc_vector_disable
|
|
*
|
|
* Mask the corrected machine check vector register in the processor.
|
|
* This function is invoked on a per-processor basis.
|
|
*
|
|
* Inputs
|
|
* dummy(unused)
|
|
*
|
|
* Outputs
|
|
* None
|
|
*/
|
|
static void
|
|
ia64_mca_cmc_vector_disable (void *dummy)
|
|
{
|
|
cmcv_reg_t cmcv;
|
|
|
|
cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
|
|
|
|
cmcv.cmcv_mask = 1; /* Mask/disable interrupt */
|
|
ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
|
|
|
|
IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x disabled.\n",
|
|
__func__, smp_processor_id(), cmcv.cmcv_vector);
|
|
}
|
|
|
|
/*
|
|
* ia64_mca_cmc_vector_enable
|
|
*
|
|
* Unmask the corrected machine check vector register in the processor.
|
|
* This function is invoked on a per-processor basis.
|
|
*
|
|
* Inputs
|
|
* dummy(unused)
|
|
*
|
|
* Outputs
|
|
* None
|
|
*/
|
|
static void
|
|
ia64_mca_cmc_vector_enable (void *dummy)
|
|
{
|
|
cmcv_reg_t cmcv;
|
|
|
|
cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
|
|
|
|
cmcv.cmcv_mask = 0; /* Unmask/enable interrupt */
|
|
ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
|
|
|
|
IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x enabled.\n",
|
|
__func__, smp_processor_id(), cmcv.cmcv_vector);
|
|
}
|
|
|
|
/*
|
|
* ia64_mca_cmc_vector_disable_keventd
|
|
*
|
|
* Called via keventd (smp_call_function() is not safe in interrupt context) to
|
|
* disable the cmc interrupt vector.
|
|
*/
|
|
static void
|
|
ia64_mca_cmc_vector_disable_keventd(struct work_struct *unused)
|
|
{
|
|
on_each_cpu(ia64_mca_cmc_vector_disable, NULL, 1, 0);
|
|
}
|
|
|
|
/*
|
|
* ia64_mca_cmc_vector_enable_keventd
|
|
*
|
|
* Called via keventd (smp_call_function() is not safe in interrupt context) to
|
|
* enable the cmc interrupt vector.
|
|
*/
|
|
static void
|
|
ia64_mca_cmc_vector_enable_keventd(struct work_struct *unused)
|
|
{
|
|
on_each_cpu(ia64_mca_cmc_vector_enable, NULL, 1, 0);
|
|
}
|
|
|
|
/*
|
|
* ia64_mca_wakeup
|
|
*
|
|
* Send an inter-cpu interrupt to wake-up a particular cpu.
|
|
*
|
|
* Inputs : cpuid
|
|
* Outputs : None
|
|
*/
|
|
static void
|
|
ia64_mca_wakeup(int cpu)
|
|
{
|
|
platform_send_ipi(cpu, IA64_MCA_WAKEUP_VECTOR, IA64_IPI_DM_INT, 0);
|
|
}
|
|
|
|
/*
|
|
* ia64_mca_wakeup_all
|
|
*
|
|
* Wakeup all the slave cpus which have rendez'ed previously.
|
|
*
|
|
* Inputs : None
|
|
* Outputs : None
|
|
*/
|
|
static void
|
|
ia64_mca_wakeup_all(void)
|
|
{
|
|
int cpu;
|
|
|
|
/* Clear the Rendez checkin flag for all cpus */
|
|
for_each_online_cpu(cpu) {
|
|
if (ia64_mc_info.imi_rendez_checkin[cpu] == IA64_MCA_RENDEZ_CHECKIN_DONE)
|
|
ia64_mca_wakeup(cpu);
|
|
}
|
|
|
|
}
|
|
|
|
/*
|
|
* ia64_mca_rendez_interrupt_handler
|
|
*
|
|
* This is handler used to put slave processors into spinloop
|
|
* while the monarch processor does the mca handling and later
|
|
* wake each slave up once the monarch is done. The state
|
|
* IA64_MCA_RENDEZ_CHECKIN_DONE indicates the cpu is rendez'ed
|
|
* in SAL. The state IA64_MCA_RENDEZ_CHECKIN_NOTDONE indicates
|
|
* the cpu has come out of OS rendezvous.
|
|
*
|
|
* Inputs : None
|
|
* Outputs : None
|
|
*/
|
|
static irqreturn_t
|
|
ia64_mca_rendez_int_handler(int rendez_irq, void *arg)
|
|
{
|
|
unsigned long flags;
|
|
int cpu = smp_processor_id();
|
|
struct ia64_mca_notify_die nd =
|
|
{ .sos = NULL, .monarch_cpu = &monarch_cpu };
|
|
|
|
/* Mask all interrupts */
|
|
local_irq_save(flags);
|
|
|
|
NOTIFY_MCA(DIE_MCA_RENDZVOUS_ENTER, get_irq_regs(), (long)&nd, 1);
|
|
|
|
ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_DONE;
|
|
/* Register with the SAL monarch that the slave has
|
|
* reached SAL
|
|
*/
|
|
ia64_sal_mc_rendez();
|
|
|
|
NOTIFY_MCA(DIE_MCA_RENDZVOUS_PROCESS, get_irq_regs(), (long)&nd, 1);
|
|
|
|
/* Wait for the monarch cpu to exit. */
|
|
while (monarch_cpu != -1)
|
|
cpu_relax(); /* spin until monarch leaves */
|
|
|
|
NOTIFY_MCA(DIE_MCA_RENDZVOUS_LEAVE, get_irq_regs(), (long)&nd, 1);
|
|
|
|
ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
|
|
/* Enable all interrupts */
|
|
local_irq_restore(flags);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/*
|
|
* ia64_mca_wakeup_int_handler
|
|
*
|
|
* The interrupt handler for processing the inter-cpu interrupt to the
|
|
* slave cpu which was spinning in the rendez loop.
|
|
* Since this spinning is done by turning off the interrupts and
|
|
* polling on the wakeup-interrupt bit in the IRR, there is
|
|
* nothing useful to be done in the handler.
|
|
*
|
|
* Inputs : wakeup_irq (Wakeup-interrupt bit)
|
|
* arg (Interrupt handler specific argument)
|
|
* Outputs : None
|
|
*
|
|
*/
|
|
static irqreturn_t
|
|
ia64_mca_wakeup_int_handler(int wakeup_irq, void *arg)
|
|
{
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/* Function pointer for extra MCA recovery */
|
|
int (*ia64_mca_ucmc_extension)
|
|
(void*,struct ia64_sal_os_state*)
|
|
= NULL;
|
|
|
|
int
|
|
ia64_reg_MCA_extension(int (*fn)(void *, struct ia64_sal_os_state *))
|
|
{
|
|
if (ia64_mca_ucmc_extension)
|
|
return 1;
|
|
|
|
ia64_mca_ucmc_extension = fn;
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
ia64_unreg_MCA_extension(void)
|
|
{
|
|
if (ia64_mca_ucmc_extension)
|
|
ia64_mca_ucmc_extension = NULL;
|
|
}
|
|
|
|
EXPORT_SYMBOL(ia64_reg_MCA_extension);
|
|
EXPORT_SYMBOL(ia64_unreg_MCA_extension);
|
|
|
|
|
|
static inline void
|
|
copy_reg(const u64 *fr, u64 fnat, u64 *tr, u64 *tnat)
|
|
{
|
|
u64 fslot, tslot, nat;
|
|
*tr = *fr;
|
|
fslot = ((unsigned long)fr >> 3) & 63;
|
|
tslot = ((unsigned long)tr >> 3) & 63;
|
|
*tnat &= ~(1UL << tslot);
|
|
nat = (fnat >> fslot) & 1;
|
|
*tnat |= (nat << tslot);
|
|
}
|
|
|
|
/* Change the comm field on the MCA/INT task to include the pid that
|
|
* was interrupted, it makes for easier debugging. If that pid was 0
|
|
* (swapper or nested MCA/INIT) then use the start of the previous comm
|
|
* field suffixed with its cpu.
|
|
*/
|
|
|
|
static void
|
|
ia64_mca_modify_comm(const struct task_struct *previous_current)
|
|
{
|
|
char *p, comm[sizeof(current->comm)];
|
|
if (previous_current->pid)
|
|
snprintf(comm, sizeof(comm), "%s %d",
|
|
current->comm, previous_current->pid);
|
|
else {
|
|
int l;
|
|
if ((p = strchr(previous_current->comm, ' ')))
|
|
l = p - previous_current->comm;
|
|
else
|
|
l = strlen(previous_current->comm);
|
|
snprintf(comm, sizeof(comm), "%s %*s %d",
|
|
current->comm, l, previous_current->comm,
|
|
task_thread_info(previous_current)->cpu);
|
|
}
|
|
memcpy(current->comm, comm, sizeof(current->comm));
|
|
}
|
|
|
|
/* On entry to this routine, we are running on the per cpu stack, see
|
|
* mca_asm.h. The original stack has not been touched by this event. Some of
|
|
* the original stack's registers will be in the RBS on this stack. This stack
|
|
* also contains a partial pt_regs and switch_stack, the rest of the data is in
|
|
* PAL minstate.
|
|
*
|
|
* The first thing to do is modify the original stack to look like a blocked
|
|
* task so we can run backtrace on the original task. Also mark the per cpu
|
|
* stack as current to ensure that we use the correct task state, it also means
|
|
* that we can do backtrace on the MCA/INIT handler code itself.
|
|
*/
|
|
|
|
static struct task_struct *
|
|
ia64_mca_modify_original_stack(struct pt_regs *regs,
|
|
const struct switch_stack *sw,
|
|
struct ia64_sal_os_state *sos,
|
|
const char *type)
|
|
{
|
|
char *p;
|
|
ia64_va va;
|
|
extern char ia64_leave_kernel[]; /* Need asm address, not function descriptor */
|
|
const pal_min_state_area_t *ms = sos->pal_min_state;
|
|
struct task_struct *previous_current;
|
|
struct pt_regs *old_regs;
|
|
struct switch_stack *old_sw;
|
|
unsigned size = sizeof(struct pt_regs) +
|
|
sizeof(struct switch_stack) + 16;
|
|
u64 *old_bspstore, *old_bsp;
|
|
u64 *new_bspstore, *new_bsp;
|
|
u64 old_unat, old_rnat, new_rnat, nat;
|
|
u64 slots, loadrs = regs->loadrs;
|
|
u64 r12 = ms->pmsa_gr[12-1], r13 = ms->pmsa_gr[13-1];
|
|
u64 ar_bspstore = regs->ar_bspstore;
|
|
u64 ar_bsp = regs->ar_bspstore + (loadrs >> 16);
|
|
const u64 *bank;
|
|
const char *msg;
|
|
int cpu = smp_processor_id();
|
|
|
|
previous_current = curr_task(cpu);
|
|
set_curr_task(cpu, current);
|
|
if ((p = strchr(current->comm, ' ')))
|
|
*p = '\0';
|
|
|
|
/* Best effort attempt to cope with MCA/INIT delivered while in
|
|
* physical mode.
|
|
*/
|
|
regs->cr_ipsr = ms->pmsa_ipsr;
|
|
if (ia64_psr(regs)->dt == 0) {
|
|
va.l = r12;
|
|
if (va.f.reg == 0) {
|
|
va.f.reg = 7;
|
|
r12 = va.l;
|
|
}
|
|
va.l = r13;
|
|
if (va.f.reg == 0) {
|
|
va.f.reg = 7;
|
|
r13 = va.l;
|
|
}
|
|
}
|
|
if (ia64_psr(regs)->rt == 0) {
|
|
va.l = ar_bspstore;
|
|
if (va.f.reg == 0) {
|
|
va.f.reg = 7;
|
|
ar_bspstore = va.l;
|
|
}
|
|
va.l = ar_bsp;
|
|
if (va.f.reg == 0) {
|
|
va.f.reg = 7;
|
|
ar_bsp = va.l;
|
|
}
|
|
}
|
|
|
|
/* mca_asm.S ia64_old_stack() cannot assume that the dirty registers
|
|
* have been copied to the old stack, the old stack may fail the
|
|
* validation tests below. So ia64_old_stack() must restore the dirty
|
|
* registers from the new stack. The old and new bspstore probably
|
|
* have different alignments, so loadrs calculated on the old bsp
|
|
* cannot be used to restore from the new bsp. Calculate a suitable
|
|
* loadrs for the new stack and save it in the new pt_regs, where
|
|
* ia64_old_stack() can get it.
|
|
*/
|
|
old_bspstore = (u64 *)ar_bspstore;
|
|
old_bsp = (u64 *)ar_bsp;
|
|
slots = ia64_rse_num_regs(old_bspstore, old_bsp);
|
|
new_bspstore = (u64 *)((u64)current + IA64_RBS_OFFSET);
|
|
new_bsp = ia64_rse_skip_regs(new_bspstore, slots);
|
|
regs->loadrs = (new_bsp - new_bspstore) * 8 << 16;
|
|
|
|
/* Verify the previous stack state before we change it */
|
|
if (user_mode(regs)) {
|
|
msg = "occurred in user space";
|
|
/* previous_current is guaranteed to be valid when the task was
|
|
* in user space, so ...
|
|
*/
|
|
ia64_mca_modify_comm(previous_current);
|
|
goto no_mod;
|
|
}
|
|
|
|
if (r13 != sos->prev_IA64_KR_CURRENT) {
|
|
msg = "inconsistent previous current and r13";
|
|
goto no_mod;
|
|
}
|
|
|
|
if (!mca_recover_range(ms->pmsa_iip)) {
|
|
if ((r12 - r13) >= KERNEL_STACK_SIZE) {
|
|
msg = "inconsistent r12 and r13";
|
|
goto no_mod;
|
|
}
|
|
if ((ar_bspstore - r13) >= KERNEL_STACK_SIZE) {
|
|
msg = "inconsistent ar.bspstore and r13";
|
|
goto no_mod;
|
|
}
|
|
va.p = old_bspstore;
|
|
if (va.f.reg < 5) {
|
|
msg = "old_bspstore is in the wrong region";
|
|
goto no_mod;
|
|
}
|
|
if ((ar_bsp - r13) >= KERNEL_STACK_SIZE) {
|
|
msg = "inconsistent ar.bsp and r13";
|
|
goto no_mod;
|
|
}
|
|
size += (ia64_rse_skip_regs(old_bspstore, slots) - old_bspstore) * 8;
|
|
if (ar_bspstore + size > r12) {
|
|
msg = "no room for blocked state";
|
|
goto no_mod;
|
|
}
|
|
}
|
|
|
|
ia64_mca_modify_comm(previous_current);
|
|
|
|
/* Make the original task look blocked. First stack a struct pt_regs,
|
|
* describing the state at the time of interrupt. mca_asm.S built a
|
|
* partial pt_regs, copy it and fill in the blanks using minstate.
|
|
*/
|
|
p = (char *)r12 - sizeof(*regs);
|
|
old_regs = (struct pt_regs *)p;
|
|
memcpy(old_regs, regs, sizeof(*regs));
|
|
/* If ipsr.ic then use pmsa_{iip,ipsr,ifs}, else use
|
|
* pmsa_{xip,xpsr,xfs}
|
|
*/
|
|
if (ia64_psr(regs)->ic) {
|
|
old_regs->cr_iip = ms->pmsa_iip;
|
|
old_regs->cr_ipsr = ms->pmsa_ipsr;
|
|
old_regs->cr_ifs = ms->pmsa_ifs;
|
|
} else {
|
|
old_regs->cr_iip = ms->pmsa_xip;
|
|
old_regs->cr_ipsr = ms->pmsa_xpsr;
|
|
old_regs->cr_ifs = ms->pmsa_xfs;
|
|
}
|
|
old_regs->pr = ms->pmsa_pr;
|
|
old_regs->b0 = ms->pmsa_br0;
|
|
old_regs->loadrs = loadrs;
|
|
old_regs->ar_rsc = ms->pmsa_rsc;
|
|
old_unat = old_regs->ar_unat;
|
|
copy_reg(&ms->pmsa_gr[1-1], ms->pmsa_nat_bits, &old_regs->r1, &old_unat);
|
|
copy_reg(&ms->pmsa_gr[2-1], ms->pmsa_nat_bits, &old_regs->r2, &old_unat);
|
|
copy_reg(&ms->pmsa_gr[3-1], ms->pmsa_nat_bits, &old_regs->r3, &old_unat);
|
|
copy_reg(&ms->pmsa_gr[8-1], ms->pmsa_nat_bits, &old_regs->r8, &old_unat);
|
|
copy_reg(&ms->pmsa_gr[9-1], ms->pmsa_nat_bits, &old_regs->r9, &old_unat);
|
|
copy_reg(&ms->pmsa_gr[10-1], ms->pmsa_nat_bits, &old_regs->r10, &old_unat);
|
|
copy_reg(&ms->pmsa_gr[11-1], ms->pmsa_nat_bits, &old_regs->r11, &old_unat);
|
|
copy_reg(&ms->pmsa_gr[12-1], ms->pmsa_nat_bits, &old_regs->r12, &old_unat);
|
|
copy_reg(&ms->pmsa_gr[13-1], ms->pmsa_nat_bits, &old_regs->r13, &old_unat);
|
|
copy_reg(&ms->pmsa_gr[14-1], ms->pmsa_nat_bits, &old_regs->r14, &old_unat);
|
|
copy_reg(&ms->pmsa_gr[15-1], ms->pmsa_nat_bits, &old_regs->r15, &old_unat);
|
|
if (ia64_psr(old_regs)->bn)
|
|
bank = ms->pmsa_bank1_gr;
|
|
else
|
|
bank = ms->pmsa_bank0_gr;
|
|
copy_reg(&bank[16-16], ms->pmsa_nat_bits, &old_regs->r16, &old_unat);
|
|
copy_reg(&bank[17-16], ms->pmsa_nat_bits, &old_regs->r17, &old_unat);
|
|
copy_reg(&bank[18-16], ms->pmsa_nat_bits, &old_regs->r18, &old_unat);
|
|
copy_reg(&bank[19-16], ms->pmsa_nat_bits, &old_regs->r19, &old_unat);
|
|
copy_reg(&bank[20-16], ms->pmsa_nat_bits, &old_regs->r20, &old_unat);
|
|
copy_reg(&bank[21-16], ms->pmsa_nat_bits, &old_regs->r21, &old_unat);
|
|
copy_reg(&bank[22-16], ms->pmsa_nat_bits, &old_regs->r22, &old_unat);
|
|
copy_reg(&bank[23-16], ms->pmsa_nat_bits, &old_regs->r23, &old_unat);
|
|
copy_reg(&bank[24-16], ms->pmsa_nat_bits, &old_regs->r24, &old_unat);
|
|
copy_reg(&bank[25-16], ms->pmsa_nat_bits, &old_regs->r25, &old_unat);
|
|
copy_reg(&bank[26-16], ms->pmsa_nat_bits, &old_regs->r26, &old_unat);
|
|
copy_reg(&bank[27-16], ms->pmsa_nat_bits, &old_regs->r27, &old_unat);
|
|
copy_reg(&bank[28-16], ms->pmsa_nat_bits, &old_regs->r28, &old_unat);
|
|
copy_reg(&bank[29-16], ms->pmsa_nat_bits, &old_regs->r29, &old_unat);
|
|
copy_reg(&bank[30-16], ms->pmsa_nat_bits, &old_regs->r30, &old_unat);
|
|
copy_reg(&bank[31-16], ms->pmsa_nat_bits, &old_regs->r31, &old_unat);
|
|
|
|
/* Next stack a struct switch_stack. mca_asm.S built a partial
|
|
* switch_stack, copy it and fill in the blanks using pt_regs and
|
|
* minstate.
|
|
*
|
|
* In the synthesized switch_stack, b0 points to ia64_leave_kernel,
|
|
* ar.pfs is set to 0.
|
|
*
|
|
* unwind.c::unw_unwind() does special processing for interrupt frames.
|
|
* It checks if the PRED_NON_SYSCALL predicate is set, if the predicate
|
|
* is clear then unw_unwind() does _not_ adjust bsp over pt_regs. Not
|
|
* that this is documented, of course. Set PRED_NON_SYSCALL in the
|
|
* switch_stack on the original stack so it will unwind correctly when
|
|
* unwind.c reads pt_regs.
|
|
*
|
|
* thread.ksp is updated to point to the synthesized switch_stack.
|
|
*/
|
|
p -= sizeof(struct switch_stack);
|
|
old_sw = (struct switch_stack *)p;
|
|
memcpy(old_sw, sw, sizeof(*sw));
|
|
old_sw->caller_unat = old_unat;
|
|
old_sw->ar_fpsr = old_regs->ar_fpsr;
|
|
copy_reg(&ms->pmsa_gr[4-1], ms->pmsa_nat_bits, &old_sw->r4, &old_unat);
|
|
copy_reg(&ms->pmsa_gr[5-1], ms->pmsa_nat_bits, &old_sw->r5, &old_unat);
|
|
copy_reg(&ms->pmsa_gr[6-1], ms->pmsa_nat_bits, &old_sw->r6, &old_unat);
|
|
copy_reg(&ms->pmsa_gr[7-1], ms->pmsa_nat_bits, &old_sw->r7, &old_unat);
|
|
old_sw->b0 = (u64)ia64_leave_kernel;
|
|
old_sw->b1 = ms->pmsa_br1;
|
|
old_sw->ar_pfs = 0;
|
|
old_sw->ar_unat = old_unat;
|
|
old_sw->pr = old_regs->pr | (1UL << PRED_NON_SYSCALL);
|
|
previous_current->thread.ksp = (u64)p - 16;
|
|
|
|
/* Finally copy the original stack's registers back to its RBS.
|
|
* Registers from ar.bspstore through ar.bsp at the time of the event
|
|
* are in the current RBS, copy them back to the original stack. The
|
|
* copy must be done register by register because the original bspstore
|
|
* and the current one have different alignments, so the saved RNAT
|
|
* data occurs at different places.
|
|
*
|
|
* mca_asm does cover, so the old_bsp already includes all registers at
|
|
* the time of MCA/INIT. It also does flushrs, so all registers before
|
|
* this function have been written to backing store on the MCA/INIT
|
|
* stack.
|
|
*/
|
|
new_rnat = ia64_get_rnat(ia64_rse_rnat_addr(new_bspstore));
|
|
old_rnat = regs->ar_rnat;
|
|
while (slots--) {
|
|
if (ia64_rse_is_rnat_slot(new_bspstore)) {
|
|
new_rnat = ia64_get_rnat(new_bspstore++);
|
|
}
|
|
if (ia64_rse_is_rnat_slot(old_bspstore)) {
|
|
*old_bspstore++ = old_rnat;
|
|
old_rnat = 0;
|
|
}
|
|
nat = (new_rnat >> ia64_rse_slot_num(new_bspstore)) & 1UL;
|
|
old_rnat &= ~(1UL << ia64_rse_slot_num(old_bspstore));
|
|
old_rnat |= (nat << ia64_rse_slot_num(old_bspstore));
|
|
*old_bspstore++ = *new_bspstore++;
|
|
}
|
|
old_sw->ar_bspstore = (unsigned long)old_bspstore;
|
|
old_sw->ar_rnat = old_rnat;
|
|
|
|
sos->prev_task = previous_current;
|
|
return previous_current;
|
|
|
|
no_mod:
|
|
printk(KERN_INFO "cpu %d, %s %s, original stack not modified\n",
|
|
smp_processor_id(), type, msg);
|
|
return previous_current;
|
|
}
|
|
|
|
/* The monarch/slave interaction is based on monarch_cpu and requires that all
|
|
* slaves have entered rendezvous before the monarch leaves. If any cpu has
|
|
* not entered rendezvous yet then wait a bit. The assumption is that any
|
|
* slave that has not rendezvoused after a reasonable time is never going to do
|
|
* so. In this context, slave includes cpus that respond to the MCA rendezvous
|
|
* interrupt, as well as cpus that receive the INIT slave event.
|
|
*/
|
|
|
|
static void
|
|
ia64_wait_for_slaves(int monarch, const char *type)
|
|
{
|
|
int c, i , wait;
|
|
|
|
/*
|
|
* wait 5 seconds total for slaves (arbitrary)
|
|
*/
|
|
for (i = 0; i < 5000; i++) {
|
|
wait = 0;
|
|
for_each_online_cpu(c) {
|
|
if (c == monarch)
|
|
continue;
|
|
if (ia64_mc_info.imi_rendez_checkin[c]
|
|
== IA64_MCA_RENDEZ_CHECKIN_NOTDONE) {
|
|
udelay(1000); /* short wait */
|
|
wait = 1;
|
|
break;
|
|
}
|
|
}
|
|
if (!wait)
|
|
goto all_in;
|
|
}
|
|
|
|
/*
|
|
* Maybe slave(s) dead. Print buffered messages immediately.
|
|
*/
|
|
ia64_mlogbuf_finish(0);
|
|
mprintk(KERN_INFO "OS %s slave did not rendezvous on cpu", type);
|
|
for_each_online_cpu(c) {
|
|
if (c == monarch)
|
|
continue;
|
|
if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE)
|
|
mprintk(" %d", c);
|
|
}
|
|
mprintk("\n");
|
|
return;
|
|
|
|
all_in:
|
|
mprintk(KERN_INFO "All OS %s slaves have reached rendezvous\n", type);
|
|
return;
|
|
}
|
|
|
|
/* mca_insert_tr
|
|
*
|
|
* Switch rid when TR reload and needed!
|
|
* iord: 1: itr, 2: itr;
|
|
*
|
|
*/
|
|
static void mca_insert_tr(u64 iord)
|
|
{
|
|
|
|
int i;
|
|
u64 old_rr;
|
|
struct ia64_tr_entry *p;
|
|
unsigned long psr;
|
|
int cpu = smp_processor_id();
|
|
|
|
psr = ia64_clear_ic();
|
|
for (i = IA64_TR_ALLOC_BASE; i < IA64_TR_ALLOC_MAX; i++) {
|
|
p = &__per_cpu_idtrs[cpu][iord-1][i];
|
|
if (p->pte & 0x1) {
|
|
old_rr = ia64_get_rr(p->ifa);
|
|
if (old_rr != p->rr) {
|
|
ia64_set_rr(p->ifa, p->rr);
|
|
ia64_srlz_d();
|
|
}
|
|
ia64_ptr(iord, p->ifa, p->itir >> 2);
|
|
ia64_srlz_i();
|
|
if (iord & 0x1) {
|
|
ia64_itr(0x1, i, p->ifa, p->pte, p->itir >> 2);
|
|
ia64_srlz_i();
|
|
}
|
|
if (iord & 0x2) {
|
|
ia64_itr(0x2, i, p->ifa, p->pte, p->itir >> 2);
|
|
ia64_srlz_i();
|
|
}
|
|
if (old_rr != p->rr) {
|
|
ia64_set_rr(p->ifa, old_rr);
|
|
ia64_srlz_d();
|
|
}
|
|
}
|
|
}
|
|
ia64_set_psr(psr);
|
|
}
|
|
|
|
/*
|
|
* ia64_mca_handler
|
|
*
|
|
* This is uncorrectable machine check handler called from OS_MCA
|
|
* dispatch code which is in turn called from SAL_CHECK().
|
|
* This is the place where the core of OS MCA handling is done.
|
|
* Right now the logs are extracted and displayed in a well-defined
|
|
* format. This handler code is supposed to be run only on the
|
|
* monarch processor. Once the monarch is done with MCA handling
|
|
* further MCA logging is enabled by clearing logs.
|
|
* Monarch also has the duty of sending wakeup-IPIs to pull the
|
|
* slave processors out of rendezvous spinloop.
|
|
*
|
|
* If multiple processors call into OS_MCA, the first will become
|
|
* the monarch. Subsequent cpus will be recorded in the mca_cpu
|
|
* bitmask. After the first monarch has processed its MCA, it
|
|
* will wake up the next cpu in the mca_cpu bitmask and then go
|
|
* into the rendezvous loop. When all processors have serviced
|
|
* their MCA, the last monarch frees up the rest of the processors.
|
|
*/
|
|
void
|
|
ia64_mca_handler(struct pt_regs *regs, struct switch_stack *sw,
|
|
struct ia64_sal_os_state *sos)
|
|
{
|
|
int recover, cpu = smp_processor_id();
|
|
struct task_struct *previous_current;
|
|
struct ia64_mca_notify_die nd =
|
|
{ .sos = sos, .monarch_cpu = &monarch_cpu, .data = &recover };
|
|
static atomic_t mca_count;
|
|
static cpumask_t mca_cpu;
|
|
|
|
if (atomic_add_return(1, &mca_count) == 1) {
|
|
monarch_cpu = cpu;
|
|
sos->monarch = 1;
|
|
} else {
|
|
cpu_set(cpu, mca_cpu);
|
|
sos->monarch = 0;
|
|
}
|
|
mprintk(KERN_INFO "Entered OS MCA handler. PSP=%lx cpu=%d "
|
|
"monarch=%ld\n", sos->proc_state_param, cpu, sos->monarch);
|
|
|
|
previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "MCA");
|
|
|
|
NOTIFY_MCA(DIE_MCA_MONARCH_ENTER, regs, (long)&nd, 1);
|
|
|
|
ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_CONCURRENT_MCA;
|
|
if (sos->monarch) {
|
|
ia64_wait_for_slaves(cpu, "MCA");
|
|
|
|
/* Wakeup all the processors which are spinning in the
|
|
* rendezvous loop. They will leave SAL, then spin in the OS
|
|
* with interrupts disabled until this monarch cpu leaves the
|
|
* MCA handler. That gets control back to the OS so we can
|
|
* backtrace the other cpus, backtrace when spinning in SAL
|
|
* does not work.
|
|
*/
|
|
ia64_mca_wakeup_all();
|
|
} else {
|
|
while (cpu_isset(cpu, mca_cpu))
|
|
cpu_relax(); /* spin until monarch wakes us */
|
|
}
|
|
|
|
NOTIFY_MCA(DIE_MCA_MONARCH_PROCESS, regs, (long)&nd, 1);
|
|
|
|
/* Get the MCA error record and log it */
|
|
ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA);
|
|
|
|
/* MCA error recovery */
|
|
recover = (ia64_mca_ucmc_extension
|
|
&& ia64_mca_ucmc_extension(
|
|
IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA),
|
|
sos));
|
|
|
|
if (recover) {
|
|
sal_log_record_header_t *rh = IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA);
|
|
rh->severity = sal_log_severity_corrected;
|
|
ia64_sal_clear_state_info(SAL_INFO_TYPE_MCA);
|
|
sos->os_status = IA64_MCA_CORRECTED;
|
|
} else {
|
|
/* Dump buffered message to console */
|
|
ia64_mlogbuf_finish(1);
|
|
}
|
|
|
|
if (__get_cpu_var(ia64_mca_tr_reload)) {
|
|
mca_insert_tr(0x1); /*Reload dynamic itrs*/
|
|
mca_insert_tr(0x2); /*Reload dynamic itrs*/
|
|
}
|
|
|
|
NOTIFY_MCA(DIE_MCA_MONARCH_LEAVE, regs, (long)&nd, 1);
|
|
|
|
if (atomic_dec_return(&mca_count) > 0) {
|
|
int i;
|
|
|
|
/* wake up the next monarch cpu,
|
|
* and put this cpu in the rendez loop.
|
|
*/
|
|
for_each_online_cpu(i) {
|
|
if (cpu_isset(i, mca_cpu)) {
|
|
monarch_cpu = i;
|
|
cpu_clear(i, mca_cpu); /* wake next cpu */
|
|
while (monarch_cpu != -1)
|
|
cpu_relax(); /* spin until last cpu leaves */
|
|
set_curr_task(cpu, previous_current);
|
|
ia64_mc_info.imi_rendez_checkin[cpu]
|
|
= IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
set_curr_task(cpu, previous_current);
|
|
ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
|
|
monarch_cpu = -1; /* This frees the slaves and previous monarchs */
|
|
}
|
|
|
|
static DECLARE_WORK(cmc_disable_work, ia64_mca_cmc_vector_disable_keventd);
|
|
static DECLARE_WORK(cmc_enable_work, ia64_mca_cmc_vector_enable_keventd);
|
|
|
|
/*
|
|
* ia64_mca_cmc_int_handler
|
|
*
|
|
* This is corrected machine check interrupt handler.
|
|
* Right now the logs are extracted and displayed in a well-defined
|
|
* format.
|
|
*
|
|
* Inputs
|
|
* interrupt number
|
|
* client data arg ptr
|
|
*
|
|
* Outputs
|
|
* None
|
|
*/
|
|
static irqreturn_t
|
|
ia64_mca_cmc_int_handler(int cmc_irq, void *arg)
|
|
{
|
|
static unsigned long cmc_history[CMC_HISTORY_LENGTH];
|
|
static int index;
|
|
static DEFINE_SPINLOCK(cmc_history_lock);
|
|
|
|
IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
|
|
__func__, cmc_irq, smp_processor_id());
|
|
|
|
/* SAL spec states this should run w/ interrupts enabled */
|
|
local_irq_enable();
|
|
|
|
spin_lock(&cmc_history_lock);
|
|
if (!cmc_polling_enabled) {
|
|
int i, count = 1; /* we know 1 happened now */
|
|
unsigned long now = jiffies;
|
|
|
|
for (i = 0; i < CMC_HISTORY_LENGTH; i++) {
|
|
if (now - cmc_history[i] <= HZ)
|
|
count++;
|
|
}
|
|
|
|
IA64_MCA_DEBUG(KERN_INFO "CMC threshold %d/%d\n", count, CMC_HISTORY_LENGTH);
|
|
if (count >= CMC_HISTORY_LENGTH) {
|
|
|
|
cmc_polling_enabled = 1;
|
|
spin_unlock(&cmc_history_lock);
|
|
/* If we're being hit with CMC interrupts, we won't
|
|
* ever execute the schedule_work() below. Need to
|
|
* disable CMC interrupts on this processor now.
|
|
*/
|
|
ia64_mca_cmc_vector_disable(NULL);
|
|
schedule_work(&cmc_disable_work);
|
|
|
|
/*
|
|
* Corrected errors will still be corrected, but
|
|
* make sure there's a log somewhere that indicates
|
|
* something is generating more than we can handle.
|
|
*/
|
|
printk(KERN_WARNING "WARNING: Switching to polling CMC handler; error records may be lost\n");
|
|
|
|
mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
|
|
|
|
/* lock already released, get out now */
|
|
goto out;
|
|
} else {
|
|
cmc_history[index++] = now;
|
|
if (index == CMC_HISTORY_LENGTH)
|
|
index = 0;
|
|
}
|
|
}
|
|
spin_unlock(&cmc_history_lock);
|
|
out:
|
|
/* Get the CMC error record and log it */
|
|
ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CMC);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/*
|
|
* ia64_mca_cmc_int_caller
|
|
*
|
|
* Triggered by sw interrupt from CMC polling routine. Calls
|
|
* real interrupt handler and either triggers a sw interrupt
|
|
* on the next cpu or does cleanup at the end.
|
|
*
|
|
* Inputs
|
|
* interrupt number
|
|
* client data arg ptr
|
|
* Outputs
|
|
* handled
|
|
*/
|
|
static irqreturn_t
|
|
ia64_mca_cmc_int_caller(int cmc_irq, void *arg)
|
|
{
|
|
static int start_count = -1;
|
|
unsigned int cpuid;
|
|
|
|
cpuid = smp_processor_id();
|
|
|
|
/* If first cpu, update count */
|
|
if (start_count == -1)
|
|
start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CMC);
|
|
|
|
ia64_mca_cmc_int_handler(cmc_irq, arg);
|
|
|
|
for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++);
|
|
|
|
if (cpuid < NR_CPUS) {
|
|
platform_send_ipi(cpuid, IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
|
|
} else {
|
|
/* If no log record, switch out of polling mode */
|
|
if (start_count == IA64_LOG_COUNT(SAL_INFO_TYPE_CMC)) {
|
|
|
|
printk(KERN_WARNING "Returning to interrupt driven CMC handler\n");
|
|
schedule_work(&cmc_enable_work);
|
|
cmc_polling_enabled = 0;
|
|
|
|
} else {
|
|
|
|
mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
|
|
}
|
|
|
|
start_count = -1;
|
|
}
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/*
|
|
* ia64_mca_cmc_poll
|
|
*
|
|
* Poll for Corrected Machine Checks (CMCs)
|
|
*
|
|
* Inputs : dummy(unused)
|
|
* Outputs : None
|
|
*
|
|
*/
|
|
static void
|
|
ia64_mca_cmc_poll (unsigned long dummy)
|
|
{
|
|
/* Trigger a CMC interrupt cascade */
|
|
platform_send_ipi(first_cpu(cpu_online_map), IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
|
|
}
|
|
|
|
/*
|
|
* ia64_mca_cpe_int_caller
|
|
*
|
|
* Triggered by sw interrupt from CPE polling routine. Calls
|
|
* real interrupt handler and either triggers a sw interrupt
|
|
* on the next cpu or does cleanup at the end.
|
|
*
|
|
* Inputs
|
|
* interrupt number
|
|
* client data arg ptr
|
|
* Outputs
|
|
* handled
|
|
*/
|
|
#ifdef CONFIG_ACPI
|
|
|
|
static irqreturn_t
|
|
ia64_mca_cpe_int_caller(int cpe_irq, void *arg)
|
|
{
|
|
static int start_count = -1;
|
|
static int poll_time = MIN_CPE_POLL_INTERVAL;
|
|
unsigned int cpuid;
|
|
|
|
cpuid = smp_processor_id();
|
|
|
|
/* If first cpu, update count */
|
|
if (start_count == -1)
|
|
start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CPE);
|
|
|
|
ia64_mca_cpe_int_handler(cpe_irq, arg);
|
|
|
|
for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++);
|
|
|
|
if (cpuid < NR_CPUS) {
|
|
platform_send_ipi(cpuid, IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
|
|
} else {
|
|
/*
|
|
* If a log was recorded, increase our polling frequency,
|
|
* otherwise, backoff or return to interrupt mode.
|
|
*/
|
|
if (start_count != IA64_LOG_COUNT(SAL_INFO_TYPE_CPE)) {
|
|
poll_time = max(MIN_CPE_POLL_INTERVAL, poll_time / 2);
|
|
} else if (cpe_vector < 0) {
|
|
poll_time = min(MAX_CPE_POLL_INTERVAL, poll_time * 2);
|
|
} else {
|
|
poll_time = MIN_CPE_POLL_INTERVAL;
|
|
|
|
printk(KERN_WARNING "Returning to interrupt driven CPE handler\n");
|
|
enable_irq(local_vector_to_irq(IA64_CPE_VECTOR));
|
|
cpe_poll_enabled = 0;
|
|
}
|
|
|
|
if (cpe_poll_enabled)
|
|
mod_timer(&cpe_poll_timer, jiffies + poll_time);
|
|
start_count = -1;
|
|
}
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/*
|
|
* ia64_mca_cpe_poll
|
|
*
|
|
* Poll for Corrected Platform Errors (CPEs), trigger interrupt
|
|
* on first cpu, from there it will trickle through all the cpus.
|
|
*
|
|
* Inputs : dummy(unused)
|
|
* Outputs : None
|
|
*
|
|
*/
|
|
static void
|
|
ia64_mca_cpe_poll (unsigned long dummy)
|
|
{
|
|
/* Trigger a CPE interrupt cascade */
|
|
platform_send_ipi(first_cpu(cpu_online_map), IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
|
|
}
|
|
|
|
#endif /* CONFIG_ACPI */
|
|
|
|
static int
|
|
default_monarch_init_process(struct notifier_block *self, unsigned long val, void *data)
|
|
{
|
|
int c;
|
|
struct task_struct *g, *t;
|
|
if (val != DIE_INIT_MONARCH_PROCESS)
|
|
return NOTIFY_DONE;
|
|
#ifdef CONFIG_KEXEC
|
|
if (atomic_read(&kdump_in_progress))
|
|
return NOTIFY_DONE;
|
|
#endif
|
|
|
|
/*
|
|
* FIXME: mlogbuf will brim over with INIT stack dumps.
|
|
* To enable show_stack from INIT, we use oops_in_progress which should
|
|
* be used in real oops. This would cause something wrong after INIT.
|
|
*/
|
|
BREAK_LOGLEVEL(console_loglevel);
|
|
ia64_mlogbuf_dump_from_init();
|
|
|
|
printk(KERN_ERR "Processes interrupted by INIT -");
|
|
for_each_online_cpu(c) {
|
|
struct ia64_sal_os_state *s;
|
|
t = __va(__per_cpu_mca[c] + IA64_MCA_CPU_INIT_STACK_OFFSET);
|
|
s = (struct ia64_sal_os_state *)((char *)t + MCA_SOS_OFFSET);
|
|
g = s->prev_task;
|
|
if (g) {
|
|
if (g->pid)
|
|
printk(" %d", g->pid);
|
|
else
|
|
printk(" %d (cpu %d task 0x%p)", g->pid, task_cpu(g), g);
|
|
}
|
|
}
|
|
printk("\n\n");
|
|
if (read_trylock(&tasklist_lock)) {
|
|
do_each_thread (g, t) {
|
|
printk("\nBacktrace of pid %d (%s)\n", t->pid, t->comm);
|
|
show_stack(t, NULL);
|
|
} while_each_thread (g, t);
|
|
read_unlock(&tasklist_lock);
|
|
}
|
|
/* FIXME: This will not restore zapped printk locks. */
|
|
RESTORE_LOGLEVEL(console_loglevel);
|
|
return NOTIFY_DONE;
|
|
}
|
|
|
|
/*
|
|
* C portion of the OS INIT handler
|
|
*
|
|
* Called from ia64_os_init_dispatch
|
|
*
|
|
* Inputs: pointer to pt_regs where processor info was saved. SAL/OS state for
|
|
* this event. This code is used for both monarch and slave INIT events, see
|
|
* sos->monarch.
|
|
*
|
|
* All INIT events switch to the INIT stack and change the previous process to
|
|
* blocked status. If one of the INIT events is the monarch then we are
|
|
* probably processing the nmi button/command. Use the monarch cpu to dump all
|
|
* the processes. The slave INIT events all spin until the monarch cpu
|
|
* returns. We can also get INIT slave events for MCA, in which case the MCA
|
|
* process is the monarch.
|
|
*/
|
|
|
|
void
|
|
ia64_init_handler(struct pt_regs *regs, struct switch_stack *sw,
|
|
struct ia64_sal_os_state *sos)
|
|
{
|
|
static atomic_t slaves;
|
|
static atomic_t monarchs;
|
|
struct task_struct *previous_current;
|
|
int cpu = smp_processor_id();
|
|
struct ia64_mca_notify_die nd =
|
|
{ .sos = sos, .monarch_cpu = &monarch_cpu };
|
|
|
|
NOTIFY_INIT(DIE_INIT_ENTER, regs, (long)&nd, 0);
|
|
|
|
mprintk(KERN_INFO "Entered OS INIT handler. PSP=%lx cpu=%d monarch=%ld\n",
|
|
sos->proc_state_param, cpu, sos->monarch);
|
|
salinfo_log_wakeup(SAL_INFO_TYPE_INIT, NULL, 0, 0);
|
|
|
|
previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "INIT");
|
|
sos->os_status = IA64_INIT_RESUME;
|
|
|
|
/* FIXME: Workaround for broken proms that drive all INIT events as
|
|
* slaves. The last slave that enters is promoted to be a monarch.
|
|
* Remove this code in September 2006, that gives platforms a year to
|
|
* fix their proms and get their customers updated.
|
|
*/
|
|
if (!sos->monarch && atomic_add_return(1, &slaves) == num_online_cpus()) {
|
|
mprintk(KERN_WARNING "%s: Promoting cpu %d to monarch.\n",
|
|
__func__, cpu);
|
|
atomic_dec(&slaves);
|
|
sos->monarch = 1;
|
|
}
|
|
|
|
/* FIXME: Workaround for broken proms that drive all INIT events as
|
|
* monarchs. Second and subsequent monarchs are demoted to slaves.
|
|
* Remove this code in September 2006, that gives platforms a year to
|
|
* fix their proms and get their customers updated.
|
|
*/
|
|
if (sos->monarch && atomic_add_return(1, &monarchs) > 1) {
|
|
mprintk(KERN_WARNING "%s: Demoting cpu %d to slave.\n",
|
|
__func__, cpu);
|
|
atomic_dec(&monarchs);
|
|
sos->monarch = 0;
|
|
}
|
|
|
|
if (!sos->monarch) {
|
|
ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_INIT;
|
|
while (monarch_cpu == -1)
|
|
cpu_relax(); /* spin until monarch enters */
|
|
|
|
NOTIFY_INIT(DIE_INIT_SLAVE_ENTER, regs, (long)&nd, 1);
|
|
NOTIFY_INIT(DIE_INIT_SLAVE_PROCESS, regs, (long)&nd, 1);
|
|
|
|
while (monarch_cpu != -1)
|
|
cpu_relax(); /* spin until monarch leaves */
|
|
|
|
NOTIFY_INIT(DIE_INIT_SLAVE_LEAVE, regs, (long)&nd, 1);
|
|
|
|
mprintk("Slave on cpu %d returning to normal service.\n", cpu);
|
|
set_curr_task(cpu, previous_current);
|
|
ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
|
|
atomic_dec(&slaves);
|
|
return;
|
|
}
|
|
|
|
monarch_cpu = cpu;
|
|
NOTIFY_INIT(DIE_INIT_MONARCH_ENTER, regs, (long)&nd, 1);
|
|
|
|
/*
|
|
* Wait for a bit. On some machines (e.g., HP's zx2000 and zx6000, INIT can be
|
|
* generated via the BMC's command-line interface, but since the console is on the
|
|
* same serial line, the user will need some time to switch out of the BMC before
|
|
* the dump begins.
|
|
*/
|
|
mprintk("Delaying for 5 seconds...\n");
|
|
udelay(5*1000000);
|
|
ia64_wait_for_slaves(cpu, "INIT");
|
|
/* If nobody intercepts DIE_INIT_MONARCH_PROCESS then we drop through
|
|
* to default_monarch_init_process() above and just print all the
|
|
* tasks.
|
|
*/
|
|
NOTIFY_INIT(DIE_INIT_MONARCH_PROCESS, regs, (long)&nd, 1);
|
|
NOTIFY_INIT(DIE_INIT_MONARCH_LEAVE, regs, (long)&nd, 1);
|
|
|
|
mprintk("\nINIT dump complete. Monarch on cpu %d returning to normal service.\n", cpu);
|
|
atomic_dec(&monarchs);
|
|
set_curr_task(cpu, previous_current);
|
|
monarch_cpu = -1;
|
|
return;
|
|
}
|
|
|
|
static int __init
|
|
ia64_mca_disable_cpe_polling(char *str)
|
|
{
|
|
cpe_poll_enabled = 0;
|
|
return 1;
|
|
}
|
|
|
|
__setup("disable_cpe_poll", ia64_mca_disable_cpe_polling);
|
|
|
|
static struct irqaction cmci_irqaction = {
|
|
.handler = ia64_mca_cmc_int_handler,
|
|
.flags = IRQF_DISABLED,
|
|
.name = "cmc_hndlr"
|
|
};
|
|
|
|
static struct irqaction cmcp_irqaction = {
|
|
.handler = ia64_mca_cmc_int_caller,
|
|
.flags = IRQF_DISABLED,
|
|
.name = "cmc_poll"
|
|
};
|
|
|
|
static struct irqaction mca_rdzv_irqaction = {
|
|
.handler = ia64_mca_rendez_int_handler,
|
|
.flags = IRQF_DISABLED,
|
|
.name = "mca_rdzv"
|
|
};
|
|
|
|
static struct irqaction mca_wkup_irqaction = {
|
|
.handler = ia64_mca_wakeup_int_handler,
|
|
.flags = IRQF_DISABLED,
|
|
.name = "mca_wkup"
|
|
};
|
|
|
|
#ifdef CONFIG_ACPI
|
|
static struct irqaction mca_cpe_irqaction = {
|
|
.handler = ia64_mca_cpe_int_handler,
|
|
.flags = IRQF_DISABLED,
|
|
.name = "cpe_hndlr"
|
|
};
|
|
|
|
static struct irqaction mca_cpep_irqaction = {
|
|
.handler = ia64_mca_cpe_int_caller,
|
|
.flags = IRQF_DISABLED,
|
|
.name = "cpe_poll"
|
|
};
|
|
#endif /* CONFIG_ACPI */
|
|
|
|
/* Minimal format of the MCA/INIT stacks. The pseudo processes that run on
|
|
* these stacks can never sleep, they cannot return from the kernel to user
|
|
* space, they do not appear in a normal ps listing. So there is no need to
|
|
* format most of the fields.
|
|
*/
|
|
|
|
static void __cpuinit
|
|
format_mca_init_stack(void *mca_data, unsigned long offset,
|
|
const char *type, int cpu)
|
|
{
|
|
struct task_struct *p = (struct task_struct *)((char *)mca_data + offset);
|
|
struct thread_info *ti;
|
|
memset(p, 0, KERNEL_STACK_SIZE);
|
|
ti = task_thread_info(p);
|
|
ti->flags = _TIF_MCA_INIT;
|
|
ti->preempt_count = 1;
|
|
ti->task = p;
|
|
ti->cpu = cpu;
|
|
p->stack = ti;
|
|
p->state = TASK_UNINTERRUPTIBLE;
|
|
cpu_set(cpu, p->cpus_allowed);
|
|
INIT_LIST_HEAD(&p->tasks);
|
|
p->parent = p->real_parent = p->group_leader = p;
|
|
INIT_LIST_HEAD(&p->children);
|
|
INIT_LIST_HEAD(&p->sibling);
|
|
strncpy(p->comm, type, sizeof(p->comm)-1);
|
|
}
|
|
|
|
/* Caller prevents this from being called after init */
|
|
static void * __init_refok mca_bootmem(void)
|
|
{
|
|
return __alloc_bootmem(sizeof(struct ia64_mca_cpu),
|
|
KERNEL_STACK_SIZE, 0);
|
|
}
|
|
|
|
/* Do per-CPU MCA-related initialization. */
|
|
void __cpuinit
|
|
ia64_mca_cpu_init(void *cpu_data)
|
|
{
|
|
void *pal_vaddr;
|
|
void *data;
|
|
long sz = sizeof(struct ia64_mca_cpu);
|
|
int cpu = smp_processor_id();
|
|
static int first_time = 1;
|
|
|
|
/*
|
|
* Structure will already be allocated if cpu has been online,
|
|
* then offlined.
|
|
*/
|
|
if (__per_cpu_mca[cpu]) {
|
|
data = __va(__per_cpu_mca[cpu]);
|
|
} else {
|
|
if (first_time) {
|
|
data = mca_bootmem();
|
|
first_time = 0;
|
|
} else
|
|
data = page_address(alloc_pages_node(numa_node_id(),
|
|
GFP_KERNEL, get_order(sz)));
|
|
if (!data)
|
|
panic("Could not allocate MCA memory for cpu %d\n",
|
|
cpu);
|
|
}
|
|
format_mca_init_stack(data, offsetof(struct ia64_mca_cpu, mca_stack),
|
|
"MCA", cpu);
|
|
format_mca_init_stack(data, offsetof(struct ia64_mca_cpu, init_stack),
|
|
"INIT", cpu);
|
|
__get_cpu_var(ia64_mca_data) = __per_cpu_mca[cpu] = __pa(data);
|
|
|
|
/*
|
|
* Stash away a copy of the PTE needed to map the per-CPU page.
|
|
* We may need it during MCA recovery.
|
|
*/
|
|
__get_cpu_var(ia64_mca_per_cpu_pte) =
|
|
pte_val(mk_pte_phys(__pa(cpu_data), PAGE_KERNEL));
|
|
|
|
/*
|
|
* Also, stash away a copy of the PAL address and the PTE
|
|
* needed to map it.
|
|
*/
|
|
pal_vaddr = efi_get_pal_addr();
|
|
if (!pal_vaddr)
|
|
return;
|
|
__get_cpu_var(ia64_mca_pal_base) =
|
|
GRANULEROUNDDOWN((unsigned long) pal_vaddr);
|
|
__get_cpu_var(ia64_mca_pal_pte) = pte_val(mk_pte_phys(__pa(pal_vaddr),
|
|
PAGE_KERNEL));
|
|
}
|
|
|
|
static void __cpuinit ia64_mca_cmc_vector_adjust(void *dummy)
|
|
{
|
|
unsigned long flags;
|
|
|
|
local_irq_save(flags);
|
|
if (!cmc_polling_enabled)
|
|
ia64_mca_cmc_vector_enable(NULL);
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
static int __cpuinit mca_cpu_callback(struct notifier_block *nfb,
|
|
unsigned long action,
|
|
void *hcpu)
|
|
{
|
|
int hotcpu = (unsigned long) hcpu;
|
|
|
|
switch (action) {
|
|
case CPU_ONLINE:
|
|
case CPU_ONLINE_FROZEN:
|
|
smp_call_function_single(hotcpu, ia64_mca_cmc_vector_adjust,
|
|
NULL, 1, 0);
|
|
break;
|
|
}
|
|
return NOTIFY_OK;
|
|
}
|
|
|
|
static struct notifier_block mca_cpu_notifier __cpuinitdata = {
|
|
.notifier_call = mca_cpu_callback
|
|
};
|
|
|
|
/*
|
|
* ia64_mca_init
|
|
*
|
|
* Do all the system level mca specific initialization.
|
|
*
|
|
* 1. Register spinloop and wakeup request interrupt vectors
|
|
*
|
|
* 2. Register OS_MCA handler entry point
|
|
*
|
|
* 3. Register OS_INIT handler entry point
|
|
*
|
|
* 4. Initialize MCA/CMC/INIT related log buffers maintained by the OS.
|
|
*
|
|
* Note that this initialization is done very early before some kernel
|
|
* services are available.
|
|
*
|
|
* Inputs : None
|
|
*
|
|
* Outputs : None
|
|
*/
|
|
void __init
|
|
ia64_mca_init(void)
|
|
{
|
|
ia64_fptr_t *init_hldlr_ptr_monarch = (ia64_fptr_t *)ia64_os_init_dispatch_monarch;
|
|
ia64_fptr_t *init_hldlr_ptr_slave = (ia64_fptr_t *)ia64_os_init_dispatch_slave;
|
|
ia64_fptr_t *mca_hldlr_ptr = (ia64_fptr_t *)ia64_os_mca_dispatch;
|
|
int i;
|
|
s64 rc;
|
|
struct ia64_sal_retval isrv;
|
|
u64 timeout = IA64_MCA_RENDEZ_TIMEOUT; /* platform specific */
|
|
static struct notifier_block default_init_monarch_nb = {
|
|
.notifier_call = default_monarch_init_process,
|
|
.priority = 0/* we need to notified last */
|
|
};
|
|
|
|
IA64_MCA_DEBUG("%s: begin\n", __func__);
|
|
|
|
/* Clear the Rendez checkin flag for all cpus */
|
|
for(i = 0 ; i < NR_CPUS; i++)
|
|
ia64_mc_info.imi_rendez_checkin[i] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
|
|
|
|
/*
|
|
* Register the rendezvous spinloop and wakeup mechanism with SAL
|
|
*/
|
|
|
|
/* Register the rendezvous interrupt vector with SAL */
|
|
while (1) {
|
|
isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_INT,
|
|
SAL_MC_PARAM_MECHANISM_INT,
|
|
IA64_MCA_RENDEZ_VECTOR,
|
|
timeout,
|
|
SAL_MC_PARAM_RZ_ALWAYS);
|
|
rc = isrv.status;
|
|
if (rc == 0)
|
|
break;
|
|
if (rc == -2) {
|
|
printk(KERN_INFO "Increasing MCA rendezvous timeout from "
|
|
"%ld to %ld milliseconds\n", timeout, isrv.v0);
|
|
timeout = isrv.v0;
|
|
NOTIFY_MCA(DIE_MCA_NEW_TIMEOUT, NULL, timeout, 0);
|
|
continue;
|
|
}
|
|
printk(KERN_ERR "Failed to register rendezvous interrupt "
|
|
"with SAL (status %ld)\n", rc);
|
|
return;
|
|
}
|
|
|
|
/* Register the wakeup interrupt vector with SAL */
|
|
isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_WAKEUP,
|
|
SAL_MC_PARAM_MECHANISM_INT,
|
|
IA64_MCA_WAKEUP_VECTOR,
|
|
0, 0);
|
|
rc = isrv.status;
|
|
if (rc) {
|
|
printk(KERN_ERR "Failed to register wakeup interrupt with SAL "
|
|
"(status %ld)\n", rc);
|
|
return;
|
|
}
|
|
|
|
IA64_MCA_DEBUG("%s: registered MCA rendezvous spinloop and wakeup mech.\n", __func__);
|
|
|
|
ia64_mc_info.imi_mca_handler = ia64_tpa(mca_hldlr_ptr->fp);
|
|
/*
|
|
* XXX - disable SAL checksum by setting size to 0; should be
|
|
* ia64_tpa(ia64_os_mca_dispatch_end) - ia64_tpa(ia64_os_mca_dispatch);
|
|
*/
|
|
ia64_mc_info.imi_mca_handler_size = 0;
|
|
|
|
/* Register the os mca handler with SAL */
|
|
if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_MCA,
|
|
ia64_mc_info.imi_mca_handler,
|
|
ia64_tpa(mca_hldlr_ptr->gp),
|
|
ia64_mc_info.imi_mca_handler_size,
|
|
0, 0, 0)))
|
|
{
|
|
printk(KERN_ERR "Failed to register OS MCA handler with SAL "
|
|
"(status %ld)\n", rc);
|
|
return;
|
|
}
|
|
|
|
IA64_MCA_DEBUG("%s: registered OS MCA handler with SAL at 0x%lx, gp = 0x%lx\n", __func__,
|
|
ia64_mc_info.imi_mca_handler, ia64_tpa(mca_hldlr_ptr->gp));
|
|
|
|
/*
|
|
* XXX - disable SAL checksum by setting size to 0, should be
|
|
* size of the actual init handler in mca_asm.S.
|
|
*/
|
|
ia64_mc_info.imi_monarch_init_handler = ia64_tpa(init_hldlr_ptr_monarch->fp);
|
|
ia64_mc_info.imi_monarch_init_handler_size = 0;
|
|
ia64_mc_info.imi_slave_init_handler = ia64_tpa(init_hldlr_ptr_slave->fp);
|
|
ia64_mc_info.imi_slave_init_handler_size = 0;
|
|
|
|
IA64_MCA_DEBUG("%s: OS INIT handler at %lx\n", __func__,
|
|
ia64_mc_info.imi_monarch_init_handler);
|
|
|
|
/* Register the os init handler with SAL */
|
|
if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_INIT,
|
|
ia64_mc_info.imi_monarch_init_handler,
|
|
ia64_tpa(ia64_getreg(_IA64_REG_GP)),
|
|
ia64_mc_info.imi_monarch_init_handler_size,
|
|
ia64_mc_info.imi_slave_init_handler,
|
|
ia64_tpa(ia64_getreg(_IA64_REG_GP)),
|
|
ia64_mc_info.imi_slave_init_handler_size)))
|
|
{
|
|
printk(KERN_ERR "Failed to register m/s INIT handlers with SAL "
|
|
"(status %ld)\n", rc);
|
|
return;
|
|
}
|
|
if (register_die_notifier(&default_init_monarch_nb)) {
|
|
printk(KERN_ERR "Failed to register default monarch INIT process\n");
|
|
return;
|
|
}
|
|
|
|
IA64_MCA_DEBUG("%s: registered OS INIT handler with SAL\n", __func__);
|
|
|
|
/*
|
|
* Configure the CMCI/P vector and handler. Interrupts for CMC are
|
|
* per-processor, so AP CMC interrupts are setup in smp_callin() (smpboot.c).
|
|
*/
|
|
register_percpu_irq(IA64_CMC_VECTOR, &cmci_irqaction);
|
|
register_percpu_irq(IA64_CMCP_VECTOR, &cmcp_irqaction);
|
|
ia64_mca_cmc_vector_setup(); /* Setup vector on BSP */
|
|
|
|
/* Setup the MCA rendezvous interrupt vector */
|
|
register_percpu_irq(IA64_MCA_RENDEZ_VECTOR, &mca_rdzv_irqaction);
|
|
|
|
/* Setup the MCA wakeup interrupt vector */
|
|
register_percpu_irq(IA64_MCA_WAKEUP_VECTOR, &mca_wkup_irqaction);
|
|
|
|
#ifdef CONFIG_ACPI
|
|
/* Setup the CPEI/P handler */
|
|
register_percpu_irq(IA64_CPEP_VECTOR, &mca_cpep_irqaction);
|
|
#endif
|
|
|
|
/* Initialize the areas set aside by the OS to buffer the
|
|
* platform/processor error states for MCA/INIT/CMC
|
|
* handling.
|
|
*/
|
|
ia64_log_init(SAL_INFO_TYPE_MCA);
|
|
ia64_log_init(SAL_INFO_TYPE_INIT);
|
|
ia64_log_init(SAL_INFO_TYPE_CMC);
|
|
ia64_log_init(SAL_INFO_TYPE_CPE);
|
|
|
|
mca_init = 1;
|
|
printk(KERN_INFO "MCA related initialization done\n");
|
|
}
|
|
|
|
/*
|
|
* ia64_mca_late_init
|
|
*
|
|
* Opportunity to setup things that require initialization later
|
|
* than ia64_mca_init. Setup a timer to poll for CPEs if the
|
|
* platform doesn't support an interrupt driven mechanism.
|
|
*
|
|
* Inputs : None
|
|
* Outputs : Status
|
|
*/
|
|
static int __init
|
|
ia64_mca_late_init(void)
|
|
{
|
|
if (!mca_init)
|
|
return 0;
|
|
|
|
register_hotcpu_notifier(&mca_cpu_notifier);
|
|
|
|
/* Setup the CMCI/P vector and handler */
|
|
init_timer(&cmc_poll_timer);
|
|
cmc_poll_timer.function = ia64_mca_cmc_poll;
|
|
|
|
/* Unmask/enable the vector */
|
|
cmc_polling_enabled = 0;
|
|
schedule_work(&cmc_enable_work);
|
|
|
|
IA64_MCA_DEBUG("%s: CMCI/P setup and enabled.\n", __func__);
|
|
|
|
#ifdef CONFIG_ACPI
|
|
/* Setup the CPEI/P vector and handler */
|
|
cpe_vector = acpi_request_vector(ACPI_INTERRUPT_CPEI);
|
|
init_timer(&cpe_poll_timer);
|
|
cpe_poll_timer.function = ia64_mca_cpe_poll;
|
|
|
|
{
|
|
irq_desc_t *desc;
|
|
unsigned int irq;
|
|
|
|
if (cpe_vector >= 0) {
|
|
/* If platform supports CPEI, enable the irq. */
|
|
irq = local_vector_to_irq(cpe_vector);
|
|
if (irq > 0) {
|
|
cpe_poll_enabled = 0;
|
|
desc = irq_desc + irq;
|
|
desc->status |= IRQ_PER_CPU;
|
|
setup_irq(irq, &mca_cpe_irqaction);
|
|
ia64_cpe_irq = irq;
|
|
ia64_mca_register_cpev(cpe_vector);
|
|
IA64_MCA_DEBUG("%s: CPEI/P setup and enabled.\n",
|
|
__func__);
|
|
return 0;
|
|
}
|
|
printk(KERN_ERR "%s: Failed to find irq for CPE "
|
|
"interrupt handler, vector %d\n",
|
|
__func__, cpe_vector);
|
|
}
|
|
/* If platform doesn't support CPEI, get the timer going. */
|
|
if (cpe_poll_enabled) {
|
|
ia64_mca_cpe_poll(0UL);
|
|
IA64_MCA_DEBUG("%s: CPEP setup and enabled.\n", __func__);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
device_initcall(ia64_mca_late_init);
|