acrn-kernel/security/keys/compat.c

87 lines
2.4 KiB
C
Raw Normal View History

/* compat.c: 32-bit compatibility syscall for 64-bit systems
*
[PATCH] Keys: Make request-key create an authorisation key The attached patch makes the following changes: (1) There's a new special key type called ".request_key_auth". This is an authorisation key for when one process requests a key and another process is started to construct it. This type of key cannot be created by the user; nor can it be requested by kernel services. Authorisation keys hold two references: (a) Each refers to a key being constructed. When the key being constructed is instantiated the authorisation key is revoked, rendering it of no further use. (b) The "authorising process". This is either: (i) the process that called request_key(), or: (ii) if the process that called request_key() itself had an authorisation key in its session keyring, then the authorising process referred to by that authorisation key will also be referred to by the new authorisation key. This means that the process that initiated a chain of key requests will authorise the lot of them, and will, by default, wind up with the keys obtained from them in its keyrings. (2) request_key() creates an authorisation key which is then passed to /sbin/request-key in as part of a new session keyring. (3) When request_key() is searching for a key to hand back to the caller, if it comes across an authorisation key in the session keyring of the calling process, it will also search the keyrings of the process specified therein and it will use the specified process's credentials (fsuid, fsgid, groups) to do that rather than the calling process's credentials. This allows a process started by /sbin/request-key to find keys belonging to the authorising process. (4) A key can be read, even if the process executing KEYCTL_READ doesn't have direct read or search permission if that key is contained within the keyrings of a process specified by an authorisation key found within the calling process's session keyring, and is searchable using the credentials of the authorising process. This allows a process started by /sbin/request-key to read keys belonging to the authorising process. (5) The magic KEY_SPEC_*_KEYRING key IDs when passed to KEYCTL_INSTANTIATE or KEYCTL_NEGATE will specify a keyring of the authorising process, rather than the process doing the instantiation. (6) One of the process keyrings can be nominated as the default to which request_key() should attach new keys if not otherwise specified. This is done with KEYCTL_SET_REQKEY_KEYRING and one of the KEY_REQKEY_DEFL_* constants. The current setting can also be read using this call. (7) request_key() is partially interruptible. If it is waiting for another process to finish constructing a key, it can be interrupted. This permits a request-key cycle to be broken without recourse to rebooting. Signed-Off-By: David Howells <dhowells@redhat.com> Signed-Off-By: Benoit Boissinot <benoit.boissinot@ens-lyon.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-24 13:00:56 +08:00
* Copyright (C) 2004-5 Red Hat, Inc. All Rights Reserved.
* Written by David Howells (dhowells@redhat.com)
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/syscalls.h>
#include <linux/keyctl.h>
#include <linux/compat.h>
#include "internal.h"
/*****************************************************************************/
/*
* the key control system call, 32-bit compatibility version for 64-bit archs
* - this should only be called if the 64-bit arch uses weird pointers in
* 32-bit mode or doesn't guarantee that the top 32-bits of the argument
* registers on taking a 32-bit syscall are zero
* - if you can, you should call sys_keyctl directly
*/
asmlinkage long compat_sys_keyctl(u32 option,
[PATCH] Keys: Make request-key create an authorisation key The attached patch makes the following changes: (1) There's a new special key type called ".request_key_auth". This is an authorisation key for when one process requests a key and another process is started to construct it. This type of key cannot be created by the user; nor can it be requested by kernel services. Authorisation keys hold two references: (a) Each refers to a key being constructed. When the key being constructed is instantiated the authorisation key is revoked, rendering it of no further use. (b) The "authorising process". This is either: (i) the process that called request_key(), or: (ii) if the process that called request_key() itself had an authorisation key in its session keyring, then the authorising process referred to by that authorisation key will also be referred to by the new authorisation key. This means that the process that initiated a chain of key requests will authorise the lot of them, and will, by default, wind up with the keys obtained from them in its keyrings. (2) request_key() creates an authorisation key which is then passed to /sbin/request-key in as part of a new session keyring. (3) When request_key() is searching for a key to hand back to the caller, if it comes across an authorisation key in the session keyring of the calling process, it will also search the keyrings of the process specified therein and it will use the specified process's credentials (fsuid, fsgid, groups) to do that rather than the calling process's credentials. This allows a process started by /sbin/request-key to find keys belonging to the authorising process. (4) A key can be read, even if the process executing KEYCTL_READ doesn't have direct read or search permission if that key is contained within the keyrings of a process specified by an authorisation key found within the calling process's session keyring, and is searchable using the credentials of the authorising process. This allows a process started by /sbin/request-key to read keys belonging to the authorising process. (5) The magic KEY_SPEC_*_KEYRING key IDs when passed to KEYCTL_INSTANTIATE or KEYCTL_NEGATE will specify a keyring of the authorising process, rather than the process doing the instantiation. (6) One of the process keyrings can be nominated as the default to which request_key() should attach new keys if not otherwise specified. This is done with KEYCTL_SET_REQKEY_KEYRING and one of the KEY_REQKEY_DEFL_* constants. The current setting can also be read using this call. (7) request_key() is partially interruptible. If it is waiting for another process to finish constructing a key, it can be interrupted. This permits a request-key cycle to be broken without recourse to rebooting. Signed-Off-By: David Howells <dhowells@redhat.com> Signed-Off-By: Benoit Boissinot <benoit.boissinot@ens-lyon.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-24 13:00:56 +08:00
u32 arg2, u32 arg3, u32 arg4, u32 arg5)
{
switch (option) {
case KEYCTL_GET_KEYRING_ID:
return keyctl_get_keyring_ID(arg2, arg3);
case KEYCTL_JOIN_SESSION_KEYRING:
return keyctl_join_session_keyring(compat_ptr(arg2));
case KEYCTL_UPDATE:
return keyctl_update_key(arg2, compat_ptr(arg3), arg4);
case KEYCTL_REVOKE:
return keyctl_revoke_key(arg2);
case KEYCTL_DESCRIBE:
return keyctl_describe_key(arg2, compat_ptr(arg3), arg4);
case KEYCTL_CLEAR:
return keyctl_keyring_clear(arg2);
case KEYCTL_LINK:
return keyctl_keyring_link(arg2, arg3);
case KEYCTL_UNLINK:
return keyctl_keyring_unlink(arg2, arg3);
case KEYCTL_SEARCH:
return keyctl_keyring_search(arg2, compat_ptr(arg3),
compat_ptr(arg4), arg5);
case KEYCTL_READ:
return keyctl_read_key(arg2, compat_ptr(arg3), arg4);
case KEYCTL_CHOWN:
return keyctl_chown_key(arg2, arg3, arg4);
case KEYCTL_SETPERM:
return keyctl_setperm_key(arg2, arg3);
case KEYCTL_INSTANTIATE:
return keyctl_instantiate_key(arg2, compat_ptr(arg3), arg4,
arg5);
case KEYCTL_NEGATE:
return keyctl_negate_key(arg2, arg3, arg4);
[PATCH] Keys: Make request-key create an authorisation key The attached patch makes the following changes: (1) There's a new special key type called ".request_key_auth". This is an authorisation key for when one process requests a key and another process is started to construct it. This type of key cannot be created by the user; nor can it be requested by kernel services. Authorisation keys hold two references: (a) Each refers to a key being constructed. When the key being constructed is instantiated the authorisation key is revoked, rendering it of no further use. (b) The "authorising process". This is either: (i) the process that called request_key(), or: (ii) if the process that called request_key() itself had an authorisation key in its session keyring, then the authorising process referred to by that authorisation key will also be referred to by the new authorisation key. This means that the process that initiated a chain of key requests will authorise the lot of them, and will, by default, wind up with the keys obtained from them in its keyrings. (2) request_key() creates an authorisation key which is then passed to /sbin/request-key in as part of a new session keyring. (3) When request_key() is searching for a key to hand back to the caller, if it comes across an authorisation key in the session keyring of the calling process, it will also search the keyrings of the process specified therein and it will use the specified process's credentials (fsuid, fsgid, groups) to do that rather than the calling process's credentials. This allows a process started by /sbin/request-key to find keys belonging to the authorising process. (4) A key can be read, even if the process executing KEYCTL_READ doesn't have direct read or search permission if that key is contained within the keyrings of a process specified by an authorisation key found within the calling process's session keyring, and is searchable using the credentials of the authorising process. This allows a process started by /sbin/request-key to read keys belonging to the authorising process. (5) The magic KEY_SPEC_*_KEYRING key IDs when passed to KEYCTL_INSTANTIATE or KEYCTL_NEGATE will specify a keyring of the authorising process, rather than the process doing the instantiation. (6) One of the process keyrings can be nominated as the default to which request_key() should attach new keys if not otherwise specified. This is done with KEYCTL_SET_REQKEY_KEYRING and one of the KEY_REQKEY_DEFL_* constants. The current setting can also be read using this call. (7) request_key() is partially interruptible. If it is waiting for another process to finish constructing a key, it can be interrupted. This permits a request-key cycle to be broken without recourse to rebooting. Signed-Off-By: David Howells <dhowells@redhat.com> Signed-Off-By: Benoit Boissinot <benoit.boissinot@ens-lyon.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-24 13:00:56 +08:00
case KEYCTL_SET_REQKEY_KEYRING:
return keyctl_set_reqkey_keyring(arg2);
case KEYCTL_SET_TIMEOUT:
return keyctl_set_timeout(arg2, arg3);
[PATCH] keys: Permit running process to instantiate keys Make it possible for a running process (such as gssapid) to be able to instantiate a key, as was requested by Trond Myklebust for NFS4. The patch makes the following changes: (1) A new, optional key type method has been added. This permits a key type to intercept requests at the point /sbin/request-key is about to be spawned and do something else with them - passing them over the rpc_pipefs files or netlink sockets for instance. The uninstantiated key, the authorisation key and the intended operation name are passed to the method. (2) The callout_info is no longer passed as an argument to /sbin/request-key to prevent unauthorised viewing of this data using ps or by looking in /proc/pid/cmdline. This means that the old /sbin/request-key program will not work with the patched kernel as it will expect to see an extra argument that is no longer there. A revised keyutils package will be made available tomorrow. (3) The callout_info is now attached to the authorisation key. Reading this key will retrieve the information. (4) A new field has been added to the task_struct. This holds the authorisation key currently active for a thread. Searches now look here for the caller's set of keys rather than looking for an auth key in the lowest level of the session keyring. This permits a thread to be servicing multiple requests at once and to switch between them. Note that this is per-thread, not per-process, and so is usable in multithreaded programs. The setting of this field is inherited across fork and exec. (5) A new keyctl function (KEYCTL_ASSUME_AUTHORITY) has been added that permits a thread to assume the authority to deal with an uninstantiated key. Assumption is only permitted if the authorisation key associated with the uninstantiated key is somewhere in the thread's keyrings. This function can also clear the assumption. (6) A new magic key specifier has been added to refer to the currently assumed authorisation key (KEY_SPEC_REQKEY_AUTH_KEY). (7) Instantiation will only proceed if the appropriate authorisation key is assumed first. The assumed authorisation key is discarded if instantiation is successful. (8) key_validate() is moved from the file of request_key functions to the file of permissions functions. (9) The documentation is updated. From: <Valdis.Kletnieks@vt.edu> Build fix. Signed-off-by: David Howells <dhowells@redhat.com> Cc: Trond Myklebust <trond.myklebust@fys.uio.no> Cc: Alexander Zangerl <az@bond.edu.au> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 17:02:47 +08:00
case KEYCTL_ASSUME_AUTHORITY:
return keyctl_assume_authority(arg2);
default:
return -EOPNOTSUPP;
}
} /* end compat_sys_keyctl() */