acrn-hypervisor/hypervisor/arch/x86/guest/vcpuid.c

863 lines
21 KiB
C

/*
* Copyright (C) 2018-2022 Intel Corporation.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <types.h>
#include <errno.h>
#include <asm/lib/bits.h>
#include <asm/guest/vcpu.h>
#include <asm/guest/vm.h>
#include <asm/cpuid.h>
#include <asm/cpufeatures.h>
#include <asm/vmx.h>
#include <asm/sgx.h>
#include <asm/tsc.h>
#include <logmsg.h>
#include <asm/rdt.h>
#include <asm/guest/vcat.h>
static inline const struct vcpuid_entry *local_find_vcpuid_entry(const struct acrn_vcpu *vcpu,
uint32_t leaf, uint32_t subleaf)
{
uint32_t i = 0U, nr, half;
const struct vcpuid_entry *found_entry = NULL;
struct acrn_vm *vm = vcpu->vm;
nr = vm->vcpuid_entry_nr;
half = nr >> 1U;
if (vm->vcpuid_entries[half].leaf < leaf) {
i = half;
}
for (; i < nr; i++) {
const struct vcpuid_entry *tmp = (const struct vcpuid_entry *)(&vm->vcpuid_entries[i]);
if (tmp->leaf < leaf) {
continue;
} else if (tmp->leaf == leaf) {
if (((tmp->flags & CPUID_CHECK_SUBLEAF) != 0U) && (tmp->subleaf != subleaf)) {
continue;
}
found_entry = tmp;
break;
} else {
/* tmp->leaf > leaf */
break;
}
}
return found_entry;
}
static inline const struct vcpuid_entry *find_vcpuid_entry(const struct acrn_vcpu *vcpu,
uint32_t leaf_arg, uint32_t subleaf)
{
const struct vcpuid_entry *entry;
uint32_t leaf = leaf_arg;
entry = local_find_vcpuid_entry(vcpu, leaf, subleaf);
if (entry == NULL) {
uint32_t limit;
struct acrn_vm *vm = vcpu->vm;
if ((leaf & 0x80000000U) != 0U) {
limit = vm->vcpuid_xlevel;
} else {
limit = vm->vcpuid_level;
}
if (leaf > limit) {
/* Intel documentation states that invalid EAX input
* will return the same information as EAX=cpuid_level
* (Intel SDM Vol. 2A - Instruction Set Reference -
* CPUID)
*/
leaf = vm->vcpuid_level;
entry = local_find_vcpuid_entry(vcpu, leaf, subleaf);
}
}
return entry;
}
static inline int32_t set_vcpuid_entry(struct acrn_vm *vm,
const struct vcpuid_entry *entry)
{
struct vcpuid_entry *tmp;
size_t entry_size = sizeof(struct vcpuid_entry);
int32_t ret;
if (vm->vcpuid_entry_nr == MAX_VM_VCPUID_ENTRIES) {
pr_err("%s, vcpuid entry over MAX_VM_VCPUID_ENTRIES(%u)\n", __func__, MAX_VM_VCPUID_ENTRIES);
ret = -ENOMEM;
} else {
tmp = &vm->vcpuid_entries[vm->vcpuid_entry_nr];
vm->vcpuid_entry_nr++;
(void)memcpy_s(tmp, entry_size, entry, entry_size);
ret = 0;
}
return ret;
}
/**
* initialization of virtual CPUID leaf
*/
static void init_vcpuid_entry(uint32_t leaf, uint32_t subleaf,
uint32_t flags, struct vcpuid_entry *entry)
{
struct cpuinfo_x86 *cpu_info;
entry->leaf = leaf;
entry->subleaf = subleaf;
entry->flags = flags;
switch (leaf) {
case 0x07U:
if (subleaf == 0U) {
uint64_t cr4_reserved_mask = get_cr4_reserved_bits();
cpuid_subleaf(leaf, subleaf, &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
entry->ebx &= ~(CPUID_EBX_PQM | CPUID_EBX_PQE);
/* mask LA57 */
entry->ecx &= ~CPUID_ECX_LA57;
/* mask SGX and SGX_LC */
entry->ebx &= ~CPUID_EBX_SGX;
entry->ecx &= ~CPUID_ECX_SGX_LC;
/* mask MPX */
entry->ebx &= ~CPUID_EBX_MPX;
/* mask Intel Processor Trace, since 14h is disabled */
entry->ebx &= ~CPUID_EBX_PROC_TRC;
/* mask CET shadow stack and indirect branch tracking */
entry->ecx &= ~CPUID_ECX_CET_SS;
entry->edx &= ~CPUID_EDX_CET_IBT;
if ((cr4_reserved_mask & CR4_FSGSBASE) != 0UL) {
entry->ebx &= ~CPUID_EBX_FSGSBASE;
}
if ((cr4_reserved_mask & CR4_SMEP) != 0UL) {
entry->ebx &= ~CPUID_EBX_SMEP;
}
if ((cr4_reserved_mask & CR4_SMAP) != 0UL) {
entry->ebx &= ~CPUID_EBX_SMAP;
}
if ((cr4_reserved_mask & CR4_UMIP) != 0UL) {
entry->ecx &= ~CPUID_ECX_UMIP;
}
if ((cr4_reserved_mask & CR4_PKE) != 0UL) {
entry->ecx &= ~CPUID_ECX_PKE;
}
if ((cr4_reserved_mask & CR4_LA57) != 0UL) {
entry->ecx &= ~CPUID_ECX_LA57;
}
if ((cr4_reserved_mask & CR4_PKS) != 0UL) {
entry->ecx &= ~CPUID_ECX_PKS;
}
} else {
entry->eax = 0U;
entry->ebx = 0U;
entry->ecx = 0U;
entry->edx = 0U;
}
break;
case 0x16U:
cpu_info = get_pcpu_info();
if (cpu_info->cpuid_level >= 0x16U) {
/* call the cpuid when 0x16 is supported */
cpuid_subleaf(leaf, subleaf, &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
} else {
/* Use the tsc to derive the emulated 0x16U cpuid. */
entry->eax = (uint32_t) (get_tsc_khz() / 1000U);
entry->ebx = entry->eax;
/* Bus frequency: hard coded to 100M */
entry->ecx = 100U;
entry->edx = 0U;
}
break;
/*
* Leaf 0x40000000
* This leaf returns the CPUID leaf range supported by the
* hypervisor and the hypervisor vendor signature.
*
* EAX: The maximum input value for CPUID supported by the
* hypervisor.
* EBX, ECX, EDX: Hypervisor vendor ID signature.
*/
case 0x40000000U:
{
static const char sig[12] = "ACRNACRNACRN";
const uint32_t *sigptr = (const uint32_t *)sig;
entry->eax = 0x40000010U;
entry->ebx = sigptr[0];
entry->ecx = sigptr[1];
entry->edx = sigptr[2];
break;
}
/*
* Leaf 0x40000001 - ACRN extended information.
* This leaf returns the extended information of ACRN hypervisor.
*
* EAX: Guest capability flags
* EBX, ECX, EDX: RESERVED (reserved fields are set to zero).
*/
case 0x40000001U:
entry->eax = 0U;
entry->ebx = 0U;
entry->ecx = 0U;
entry->edx = 0U;
break;
/*
* Leaf 0x40000010 - Timing Information.
* This leaf returns the current TSC frequency and
* current Bus frequency in kHz.
*
* EAX: (Virtual) TSC frequency in kHz.
* TSC frequency is calculated from PIT in ACRN
* EBX, ECX, EDX: RESERVED (reserved fields are set to zero).
*/
case 0x40000010U:
entry->eax = get_tsc_khz();
entry->ebx = 0U;
entry->ecx = 0U;
entry->edx = 0U;
break;
default:
cpuid_subleaf(leaf, subleaf, &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
break;
}
}
static int32_t set_vcpuid_sgx(struct acrn_vm *vm)
{
int32_t result = 0;
if (is_vsgx_supported(vm->vm_id)) {
struct vcpuid_entry entry;
struct epc_map *maps;
uint32_t mid;
uint64_t size = 0;
/* init cpuid.12h.0h */
init_vcpuid_entry(CPUID_SGX_LEAF, 0U, CPUID_CHECK_SUBLEAF, &entry);
result = set_vcpuid_entry(vm, &entry);
/* init cpuid.12h.1h */
if (result == 0) {
init_vcpuid_entry(CPUID_SGX_LEAF, 1U, CPUID_CHECK_SUBLEAF, &entry);
/* MPX not present to guest */
entry.ecx &= (uint32_t) ~XCR0_BNDREGS;
entry.ecx &= (uint32_t) ~XCR0_BNDCSR;
result = set_vcpuid_entry(vm, &entry);
}
if (result == 0) {
maps = get_epc_mapping(vm->vm_id);
/* init cpuid.12h.2h, only build one EPC section for a VM */
for (mid = 0U; mid <= MAX_EPC_SECTIONS; mid++) {
size += maps[mid].size;
}
entry.leaf = CPUID_SGX_LEAF;
entry.subleaf = CPUID_SGX_EPC_SUBLEAF_BASE;
entry.flags = CPUID_CHECK_SUBLEAF;
entry.eax = CPUID_SGX_EPC_TYPE_VALID;
entry.eax |= (uint32_t)maps[0].gpa & CPUID_SGX_EPC_LOW_MASK;
entry.ebx = (uint32_t)(maps[0].gpa >> 32U) & CPUID_SGX_EPC_HIGH_MASK;
entry.ecx = (uint32_t)size & CPUID_SGX_EPC_LOW_MASK;
entry.edx = (uint32_t)(size >> 32U) & CPUID_SGX_EPC_HIGH_MASK;
result = set_vcpuid_entry(vm, &entry);
}
}
return result;
}
#ifdef CONFIG_VCAT_ENABLED
/**
* @brief * Number of ways (CBM length) is detected with CPUID.0x4
*
* @pre vm != NULL
*/
static int32_t set_vcpuid_vcat_04h(const struct acrn_vm *vm, struct vcpuid_entry *entry)
{
uint32_t cache_type = entry->eax & 0x1FU; /* EAX bits 04:00 */
uint32_t cache_level = (entry->eax >> 5U) & 0x7U; /* EAX bits 07:05 */
uint16_t vcbm_len = 0U;
if (cache_level == 2U) {
vcbm_len = vcat_get_vcbm_len(vm, RDT_RESOURCE_L2);
} else if (cache_level == 3U) {
vcbm_len = vcat_get_vcbm_len(vm, RDT_RESOURCE_L3);
}
/*
* cache_type:
* 0 = Null - No more caches.
* 1 = Data Cache.
* 2 = Instruction Cache.
* 3 = Unified Cache.
* 4-31 = Reserved
*
* cache_level (starts at 1):
* 2 = L2
* 3 = L3
*/
if (((cache_type == 0x1U) || (cache_type == 0x3U)) && (vcbm_len != 0U)) {
/*
* EBX Bits 11 - 00: L = System Coherency Line Size**.
* Bits 21 - 12: P = Physical Line partitions**.
* Bits 31 - 22: W = Ways of associativity**.
*/
entry->ebx &= ~0xFFC00000U;
/* Report # of cache ways (CBM length) to guest VM */
entry->ebx |= (vcbm_len - 1U) << 22U;
}
return 0;
}
/**
* @brief RDT allocation enumeration sub-leaf (EAX = 10H, ECX = 0)
* Expose CAT capabilities to guest VM
*
* @pre vm != NULL
*/
static int32_t set_vcpuid_vcat_10h_subleaf_0(struct acrn_vm *vm, bool l2, bool l3)
{
struct vcpuid_entry entry;
init_vcpuid_entry(CPUID_RDT_ALLOCATION, 0U, CPUID_CHECK_SUBLEAF, &entry);
entry.ebx &= ~0xeU; /* Set the L3/L2/MBA bits (bits 1, 2, and 3) all to 0 (not supported) */
if (l2) {
/* Bit 02: Supports L2 Cache Allocation Technology if 1 */
entry.ebx |= 0x4U;
}
if (l3) {
/* Bit 01: Supports L3 Cache Allocation Technology if 1 */
entry.ebx |= 0x2U;
}
return set_vcpuid_entry(vm, &entry);
}
/**
* @brief L2/L3 enumeration sub-leaf
*
* @pre vm != NULL
*/
static int32_t set_vcpuid_vcat_10h_subleaf_res(struct acrn_vm *vm, uint32_t subleaf, uint16_t num_vclosids)
{
struct vcpuid_entry entry;
uint16_t vcbm_len;
int res;
if (subleaf == 1U) {
res = RDT_RESOURCE_L3;
} else {
res = RDT_RESOURCE_L2;
}
vcbm_len = vcat_get_vcbm_len(vm, res);
/* Set cache cbm_len */
init_vcpuid_entry(CPUID_RDT_ALLOCATION, subleaf, CPUID_CHECK_SUBLEAF, &entry);
if ((entry.eax != 0U) && (vcbm_len != 0U)) {
/* Bits 4 - 00: Length of the capacity bit mask for the corresponding ResID using minus-one notation */
entry.eax = (entry.eax & ~0x1F) | (vcbm_len - 1U);
/* Bits 31 - 00: Bit-granular map of isolation/contention of allocation units
* Each set bit within the length of the CBM indicates the corresponding unit of the L2/L3 allocation
* may be used by other entities in the platform. Each cleared bit within the length of the CBM
* indicates the corresponding allocation unit can be configured to implement a priority-based
* allocation scheme chosen by an OS/VMM without interference with other hardware agents in the system.
*/
entry.ebx = (uint32_t)vcat_pcbm_to_vcbm(vm, entry.ebx, res);
/* Do not support CDP for now */
entry.ecx &= ~0x4U;
/* Report max CLOS to guest VM
* Bits 15 - 00: Highest COS number supported for this ResID using minus-one notation
*/
entry.edx = (entry.edx & 0xFFFF0000U) | (num_vclosids - 1U);
}
return set_vcpuid_entry(vm, &entry);
}
/**
* @pre vm != NULL
*/
static int32_t set_vcpuid_vcat_10h(struct acrn_vm *vm)
{
int32_t result;
uint16_t num_vclosids = vcat_get_num_vclosids(vm);
bool l2 = is_l2_vcat_configured(vm);
bool l3 = is_l3_vcat_configured(vm);
/* RDT allocation enumeration sub-leaf (EAX=10H, ECX=0) */
result = set_vcpuid_vcat_10h_subleaf_0(vm, l2, l3);
if ((result == 0) && l2) {
/* L2 enumeration sub-leaf (EAX=10H, ECX=2) */
result = set_vcpuid_vcat_10h_subleaf_res(vm, 2U, num_vclosids);
}
if ((result == 0) && l3) {
/* L3 enumeration sub-leaf (EAX=10H, ECX=1) */
result = set_vcpuid_vcat_10h_subleaf_res(vm, 1U, num_vclosids);
}
return result;
}
#endif
static int32_t set_vcpuid_extended_function(struct acrn_vm *vm)
{
uint32_t i, limit;
struct vcpuid_entry entry;
int32_t result;
init_vcpuid_entry(0x40000000U, 0U, 0U, &entry);
result = set_vcpuid_entry(vm, &entry);
if (result == 0) {
init_vcpuid_entry(0x40000001U, 0U, 0U, &entry);
/* EAX: Guest capability flags (e.g. whether it is a privilege VM) */
if (is_service_vm(vm)) {
entry.eax |= GUEST_CAPS_PRIVILEGE_VM;
}
#ifdef CONFIG_HYPERV_ENABLED
else {
hyperv_init_vcpuid_entry(0x40000001U, 0U, 0U, &entry);
}
#endif
result = set_vcpuid_entry(vm, &entry);
}
#ifdef CONFIG_HYPERV_ENABLED
if (result == 0) {
for (i = 0x40000002U; i <= 0x40000006U; i++) {
hyperv_init_vcpuid_entry(i, 0U, 0U, &entry);
result = set_vcpuid_entry(vm, &entry);
if (result != 0) {
break;
}
}
}
#endif
if (result == 0) {
init_vcpuid_entry(0x40000010U, 0U, 0U, &entry);
result = set_vcpuid_entry(vm, &entry);
}
if (result == 0) {
init_vcpuid_entry(0x80000000U, 0U, 0U, &entry);
result = set_vcpuid_entry(vm, &entry);
}
if (result == 0) {
limit = entry.eax;
vm->vcpuid_xlevel = limit;
for (i = 0x80000002U; i <= limit; i++) {
init_vcpuid_entry(i, 0U, 0U, &entry);
result = set_vcpuid_entry(vm, &entry);
if (result != 0) {
break;
}
}
}
return result;
}
static inline bool is_percpu_related(uint32_t leaf)
{
return ((leaf == 0x1U) || (leaf == 0xbU) || (leaf == 0xdU) || (leaf == 0x19U) || (leaf == 0x80000001U) || (leaf == 0x2U) || (leaf == 0x1aU));
}
int32_t set_vcpuid_entries(struct acrn_vm *vm)
{
int32_t result;
struct vcpuid_entry entry;
uint32_t limit;
uint32_t i, j;
struct cpuinfo_x86 *cpu_info = get_pcpu_info();
init_vcpuid_entry(0U, 0U, 0U, &entry);
if (cpu_info->cpuid_level < 0x16U) {
/* The cpuid with zero leaf returns the max level. Emulate that the 0x16U is supported */
entry.eax = 0x16U;
}
result = set_vcpuid_entry(vm, &entry);
if (result == 0) {
limit = entry.eax;
vm->vcpuid_level = limit;
for (i = 1U; i <= limit; i++) {
if (is_percpu_related(i)) {
continue;
}
switch (i) {
case 0x04U:
for (j = 0U; ; j++) {
init_vcpuid_entry(i, j, CPUID_CHECK_SUBLEAF, &entry);
if (entry.eax == 0U) {
break;
}
#ifdef CONFIG_VCAT_ENABLED
if (is_vcat_configured(vm)) {
result = set_vcpuid_vcat_04h(vm, &entry);
}
#endif
result = set_vcpuid_entry(vm, &entry);
if (result != 0) {
/* wants to break out of switch */
break;
}
}
break;
case 0x07U:
init_vcpuid_entry(i, 0U, CPUID_CHECK_SUBLEAF, &entry);
if (entry.eax != 0U) {
pr_warn("vcpuid: only support subleaf 0 for cpu leaf 07h");
entry.eax = 0U;
}
if (is_vsgx_supported(vm->vm_id)) {
entry.ebx |= CPUID_EBX_SGX;
}
#ifdef CONFIG_VCAT_ENABLED
if (is_vcat_configured(vm)) {
/* Bit 15: Supports Intel Resource Director Technology (Intel RDT) Allocation capability if 1 */
entry.ebx |= CPUID_EBX_PQE;
}
#endif
result = set_vcpuid_entry(vm, &entry);
break;
case 0x12U:
result = set_vcpuid_sgx(vm);
break;
/* These features are disabled */
/* PMU is not supported except for core partition VM, like RTVM */
case 0x0aU:
if (is_pmu_pt_configured(vm)) {
init_vcpuid_entry(i, 0U, 0U, &entry);
result = set_vcpuid_entry(vm, &entry);
}
break;
/* Intel RDT */
case 0x0fU:
break;
/* Intel RDT */
case 0x10U:
#ifdef CONFIG_VCAT_ENABLED
if (is_vcat_configured(vm)) {
result = set_vcpuid_vcat_10h(vm);
}
#endif
break;
/* Intel Processor Trace */
case 0x14U:
/* PCONFIG */
case 0x1bU:
/* V2 Extended Topology Enumeration Leaf */
case 0x1fU:
break;
default:
init_vcpuid_entry(i, 0U, 0U, &entry);
result = set_vcpuid_entry(vm, &entry);
break;
}
/* WARNING: do nothing between break out of switch and before this check */
if (result != 0) {
/* break out of for */
break;
}
}
if (result == 0) {
result = set_vcpuid_extended_function(vm);
}
}
return result;
}
static void guest_cpuid_01h(struct acrn_vcpu *vcpu, uint32_t *eax, uint32_t *ebx, uint32_t *ecx, uint32_t *edx)
{
uint32_t apicid = vlapic_get_apicid(vcpu_vlapic(vcpu));
uint64_t guest_ia32_misc_enable = vcpu_get_guest_msr(vcpu, MSR_IA32_MISC_ENABLE);
uint64_t cr4_reserved_mask = get_cr4_reserved_bits();
cpuid_subleaf(0x1U, 0x0U, eax, ebx, ecx, edx);
/* Patching initial APIC ID */
*ebx &= ~APIC_ID_MASK;
*ebx |= (apicid << APIC_ID_SHIFT);
if (vm_hide_mtrr(vcpu->vm)) {
/* mask mtrr */
*edx &= ~CPUID_EDX_MTRR;
}
/* mask Safer Mode Extension */
*ecx &= ~CPUID_ECX_SMX;
/* mask SDBG for silicon debug */
*ecx &= ~CPUID_ECX_SDBG;
/* mask VMX to guest OS */
if (!is_nvmx_configured(vcpu->vm)) {
*ecx &= ~CPUID_ECX_VMX;
}
/* set Hypervisor Present Bit */
*ecx |= CPUID_ECX_HV;
if ((cr4_reserved_mask & CR4_PCIDE) != 0UL) {
*ecx &= ~CPUID_ECX_PCID;
}
/* guest monitor/mwait is supported only if it is allowed('vm_mwait_cap' is true)
* and MSR_IA32_MISC_ENABLE_MONITOR_ENA bit of guest MSR_IA32_MISC_ENABLE is set,
* else clear cpuid.01h[3].
*/
*ecx &= ~CPUID_ECX_MONITOR;
if (vcpu->vm->arch_vm.vm_mwait_cap &&
((guest_ia32_misc_enable & MSR_IA32_MISC_ENABLE_MONITOR_ENA) != 0UL)) {
*ecx |= CPUID_ECX_MONITOR;
}
*ecx &= ~CPUID_ECX_OSXSAVE;
if ((*ecx & CPUID_ECX_XSAVE) != 0U) {
uint64_t cr4;
/*read guest CR4*/
cr4 = vcpu_get_cr4(vcpu);
if ((cr4 & CR4_OSXSAVE) != 0UL) {
*ecx |= CPUID_ECX_OSXSAVE;
}
}
if ((cr4_reserved_mask & CR4_VME) != 0UL) {
*edx &= ~CPUID_EDX_VME;
}
if ((cr4_reserved_mask & CR4_DE) != 0UL) {
*edx &= ~CPUID_EDX_DE;
}
if ((cr4_reserved_mask & CR4_PSE) != 0UL) {
*edx &= ~CPUID_EDX_PSE;
}
if ((cr4_reserved_mask & CR4_PAE) != 0UL) {
*edx &= ~CPUID_EDX_PAE;
}
if ((cr4_reserved_mask & CR4_PGE) != 0UL) {
*edx &= ~CPUID_EDX_PGE;
}
if ((cr4_reserved_mask & CR4_OSFXSR) != 0UL) {
*edx &= ~CPUID_EDX_FXSR;
}
/* DS/PEBS is not supported except for core partition VM, like RTVM */
if (!is_pmu_pt_configured(vcpu->vm)) {
/* mask Debug Store feature */
*ecx &= ~(CPUID_ECX_DTES64 | CPUID_ECX_DS_CPL);
/* mask PDCM: Perfmon and Debug Capability */
*ecx &= ~CPUID_ECX_PDCM;
/* mask Debug Store feature */
*edx &= ~CPUID_EDX_DTES;
}
}
static void guest_cpuid_0bh(struct acrn_vcpu *vcpu, uint32_t *eax, uint32_t *ebx, uint32_t *ecx, uint32_t *edx)
{
/* Forward host cpu topology to the guest, guest will know the native platform information such as host cpu topology here */
cpuid_subleaf(0x0BU, *ecx, eax, ebx, ecx, edx);
/* Patching X2APIC */
*edx = vlapic_get_apicid(vcpu_vlapic(vcpu));
}
static void guest_cpuid_0dh(__unused struct acrn_vcpu *vcpu, uint32_t *eax, uint32_t *ebx, uint32_t *ecx, uint32_t *edx)
{
uint32_t subleaf = *ecx;
if (!pcpu_has_cap(X86_FEATURE_OSXSAVE)) {
*eax = 0U;
*ebx = 0U;
*ecx = 0U;
*edx = 0U;
} else {
cpuid_subleaf(0x0dU, subleaf, eax, ebx, ecx, edx);
switch (subleaf) {
case 0U:
/* SDM Vol.1 17-2, On processors that do not support Intel MPX,
* CPUID.(EAX=0DH,ECX=0):EAX[3] and
* CPUID.(EAX=0DH,ECX=0):EAX[4] will both be 0 */
*eax &= ~(CPUID_EAX_XCR0_BNDREGS | CPUID_EAX_XCR0_BNDCSR);
break;
case 1U:
*ecx &= ~(CPUID_ECX_CET_U_STATE | CPUID_ECX_CET_S_STATE);
break;
case 11U:
case 12U:
*eax = 0U;
*ebx = 0U;
*ecx = 0U;
*edx = 0U;
break;
default:
/* No emulation for other leaves */
break;
}
}
}
static void guest_cpuid_19h(struct acrn_vcpu *vcpu, uint32_t *eax, uint32_t *ebx, uint32_t *ecx, uint32_t *edx)
{
if (pcpu_has_cap(X86_FEATURE_KEYLOCKER)) {
/* Host CR4.KL should be enabled at boot time */
cpuid_subleaf(0x19U, 0U, eax, ebx, ecx, edx);
/* Guest CR4.KL determines KL_AES_ENABLED */
*ebx &= ~(vcpu->arch.cr4_kl_enabled ? 0U : CPUID_EBX_KL_AES_EN);
/* Don't support nobackup and randomization parameter of LOADIWKEY */
*ecx &= ~(CPUID_ECX_KL_NOBACKUP | CPUID_ECX_KL_RANDOM_KS);
} else {
*eax = 0U;
*ebx = 0U;
*ecx = 0U;
*edx = 0U;
}
}
static void guest_cpuid_80000001h(const struct acrn_vcpu *vcpu,
uint32_t *eax, uint32_t *ebx, uint32_t *ecx, uint32_t *edx)
{
const struct vcpuid_entry *entry_check = find_vcpuid_entry(vcpu, 0x80000000U, 0);
uint64_t guest_ia32_misc_enable = vcpu_get_guest_msr(vcpu, MSR_IA32_MISC_ENABLE);
uint32_t leaf = 0x80000001U;
if ((entry_check != NULL) && (entry_check->eax >= leaf)) {
cpuid_subleaf(leaf, 0x0U, eax, ebx, ecx, edx);
/* SDM Vol4 2.1, XD Bit Disable of MSR_IA32_MISC_ENABLE
* When set to 1, the Execute Disable Bit feature (XD Bit) is disabled and the XD Bit
* extended feature flag will be clear (CPUID.80000001H: EDX[20]=0)
*/
if ((guest_ia32_misc_enable & MSR_IA32_MISC_ENABLE_XD_DISABLE) != 0UL) {
*edx = *edx & ~CPUID_EDX_XD_BIT_AVIL;
}
} else {
*eax = 0U;
*ebx = 0U;
*ecx = 0U;
*edx = 0U;
}
}
static void guest_limit_cpuid(const struct acrn_vcpu *vcpu, uint32_t leaf,
uint32_t *eax, uint32_t *ebx, uint32_t *ecx, uint32_t *edx)
{
uint64_t guest_ia32_misc_enable = vcpu_get_guest_msr(vcpu, MSR_IA32_MISC_ENABLE);
if ((guest_ia32_misc_enable & MSR_IA32_MISC_ENABLE_LIMIT_CPUID) != 0UL) {
/* limit the leaf number to 2 */
if (leaf == 0U) {
*eax = 2U;
} else if (leaf > 2U) {
*eax = 0U;
*ebx = 0U;
*ecx = 0U;
*edx = 0U;
} else {
/* In this case, leaf is 1U, return the cpuid value get above */
}
}
}
void guest_cpuid(struct acrn_vcpu *vcpu, uint32_t *eax, uint32_t *ebx, uint32_t *ecx, uint32_t *edx)
{
uint32_t leaf = *eax;
uint32_t subleaf = *ecx;
/* vm related */
if (!is_percpu_related(leaf)) {
const struct vcpuid_entry *entry = find_vcpuid_entry(vcpu, leaf, subleaf);
if (entry != NULL) {
*eax = entry->eax;
*ebx = entry->ebx;
*ecx = entry->ecx;
*edx = entry->edx;
} else {
*eax = 0U;
*ebx = 0U;
*ecx = 0U;
*edx = 0U;
}
} else {
/* percpu related */
switch (leaf) {
case 0x01U:
guest_cpuid_01h(vcpu, eax, ebx, ecx, edx);
break;
case 0x0bU:
guest_cpuid_0bh(vcpu, eax, ebx, ecx, edx);
break;
case 0x0dU:
guest_cpuid_0dh(vcpu, eax, ebx, ecx, edx);
break;
case 0x19U:
guest_cpuid_19h(vcpu, eax, ebx, ecx, edx);
break;
case 0x80000001U:
guest_cpuid_80000001h(vcpu, eax, ebx, ecx, edx);
break;
default:
/*
* In this switch statement, leaf 0x01/0x0b/0x0d/0x19/0x80000001
* shall be handled specifically. All the other cases
* just return physical value.
*/
cpuid_subleaf(leaf, *ecx, eax, ebx, ecx, edx);
break;
}
}
guest_limit_cpuid(vcpu, leaf, eax, ebx, ecx, edx);
}