acrn-hypervisor/devicemodel/hw/uart_core.c

1088 lines
22 KiB
C

/*-
* Copyright (c) 2012 NetApp, Inc.
* Copyright (c) 2013 Neel Natu <neel@freebsd.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <termios.h>
#include <unistd.h>
#include <stdbool.h>
#include <string.h>
#include <pthread.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <sys/errno.h>
#include "types.h"
#include "mevent.h"
#include "uart_core.h"
#include "ns16550.h"
#include "dm.h"
#include "dm_string.h"
#define COM1_BASE 0x3F8
#define COM1_IRQ 4
#define COM2_BASE 0x2F8
#define COM2_IRQ 3
#define DEFAULT_RCLK 1843200
#define DEFAULT_BAUD 9600
#define FCR_RX_MASK 0xC0
#define MCR_OUT1 0x04
#define MCR_OUT2 0x08
#define MSR_DELTA_MASK 0x0f
#ifndef REG_SCR
#define REG_SCR com_scr
#endif
#define DEFAULT_FIFOSZ (256)
#define SOCK_FIFOSZ (32 * 1024)
static int uart_debug;
#define DPRINTF(params) do { if (uart_debug) printf params; } while (0)
#define WPRINTF(params) (printf params)
static struct termios tio_stdio_orig;
static struct {
int baseaddr;
int irq;
bool inuse;
} uart_lres[] = {
{ COM1_BASE, COM1_IRQ, false},
{ COM2_BASE, COM2_IRQ, false},
};
#define UART_NLDEVS (ARRAY_SIZE(uart_lres))
enum uart_be_type {
UART_BE_INVALID = 0,
UART_BE_STDIO,
UART_BE_TTY,
UART_BE_SOCK
};
struct fifo {
uint8_t *buf;
int rindex; /* index to read from */
int windex; /* index to write to */
int num; /* number of characters in the fifo */
int size; /* size of the fifo */
};
struct uart_backend {
/*
* UART_BE_STDIO: fd = STDIN_FILENO
* UART_BE_TTY: fd = open(tty)
* UART_BE_SOCK: fd = file descriptor of listen socket
*/
int fd;
struct mevent *evp;
/*
* UART_BE_STDIO: fd2 = STDOUT_FILENO
* UART_BE_TTY: fd2 = fd = open(tty)
* UART_BE_SOCK: fd2 = file descriptor of connected socket
*/
int fd2;
struct mevent *evp2;
enum uart_be_type be_type;
bool opened;
};
struct uart_vdev {
pthread_mutex_t mtx; /* protects all elements */
uint8_t data; /* Data register (R/W) */
uint8_t ier; /* Interrupt enable register (R/W) */
uint8_t lcr; /* Line control register (R/W) */
uint8_t mcr; /* Modem control register (R/W) */
uint8_t lsr; /* Line status register (R/W) */
uint8_t msr; /* Modem status register (R/W) */
uint8_t fcr; /* FIFO control register (W) */
uint8_t scr; /* Scratch register (R/W) */
uint8_t dll; /* Baudrate divisor latch LSB */
uint8_t dlh; /* Baudrate divisor latch MSB */
struct fifo rxfifo;
struct uart_backend be;
bool thre_int_pending; /* THRE interrupt pending */
void *arg;
int rxfifo_size;
uart_intr_func_t intr_assert;
uart_intr_func_t intr_deassert;
};
static void uart_drain(int fd, enum ev_type ev, void *arg);
static void uart_deinit(struct uart_vdev *uart);
static int uart_backend_read(struct uart_backend *be);
static int uart_backend_write(struct uart_backend *be, unsigned char wb);
static int uart_reset_backend(struct uart_backend *be);
static int uart_enable_backend(struct uart_backend *be, bool enable);
static void
uart_reset_stdio(void)
{
tcsetattr(STDIN_FILENO, TCSANOW, &tio_stdio_orig);
stdio_in_use = false;
}
static void
rxfifo_reset(struct uart_vdev *uart, int size)
{
struct fifo *fifo;
if (size > uart->rxfifo_size)
size = uart->rxfifo_size;
fifo = &uart->rxfifo;
fifo->rindex = 0;
fifo->windex = 0;
fifo->num = 0;
fifo->size = size;
uart_reset_backend(&uart->be);
}
static int
rxfifo_available(struct uart_vdev *uart)
{
struct fifo *fifo;
fifo = &uart->rxfifo;
return (fifo->num < fifo->size);
}
static int
rxfifo_putchar(struct uart_vdev *uart, uint8_t ch)
{
struct fifo *fifo;
fifo = &uart->rxfifo;
if (fifo->num < fifo->size) {
fifo->buf[fifo->windex] = ch;
fifo->windex = (fifo->windex + 1) % fifo->size;
fifo->num++;
if (!rxfifo_available(uart))
uart_enable_backend(&uart->be, false);
return 0;
} else
return -1;
}
static int
rxfifo_getchar(struct uart_vdev *uart)
{
struct fifo *fifo;
int c, wasfull;
wasfull = 0;
fifo = &uart->rxfifo;
if (fifo->num > 0) {
if (!rxfifo_available(uart))
wasfull = 1;
c = fifo->buf[fifo->rindex];
fifo->rindex = (fifo->rindex + 1) % fifo->size;
fifo->num--;
if (wasfull)
uart_enable_backend(&uart->be, true);
return c;
} else
return -1;
}
static int
rxfifo_numchars(struct uart_vdev *uart)
{
struct fifo *fifo = &uart->rxfifo;
return fifo->num;
}
static void
uart_mevent_teardown(void *param)
{
struct uart_vdev *uart = param;
struct uart_backend *be;
if (!uart)
return;
be = &uart->be;
if (!be->opened)
return;
switch (be->be_type) {
case UART_BE_STDIO:
uart_reset_stdio();
break;
case UART_BE_TTY:
if (be->fd > 0)
close(be->fd);
break;
case UART_BE_SOCK:
if (be->fd2 > 0)
close(be->fd2);
if (be->fd > 0)
close(be->fd);
break;
default:
break; /* nothing to do */
}
be->evp = NULL;
be->evp2 = NULL;
be->fd2 = -1;
be->fd = -1;
be->opened = false;
be->be_type = UART_BE_INVALID;
uart_deinit(uart);
}
static uint8_t
modem_status(uint8_t mcr)
{
uint8_t msr;
if (mcr & MCR_LOOPBACK) {
/*
* In the loopback mode certain bits from the MCR are
* reflected back into MSR.
*/
msr = 0;
if (mcr & MCR_RTS)
msr |= MSR_CTS;
if (mcr & MCR_DTR)
msr |= MSR_DSR;
if (mcr & MCR_OUT1)
msr |= MSR_RI;
if (mcr & MCR_OUT2)
msr |= MSR_DCD;
} else {
/*
* Always assert DCD and DSR so tty open doesn't block
* even if CLOCAL is turned off.
*/
msr = MSR_DCD | MSR_DSR;
}
return msr;
}
/*
* The IIR returns a prioritized interrupt reason:
* - receive data available
* - transmit holding register empty
* - modem status change
*
* Return an interrupt reason if one is available.
*/
static int
uart_intr_reason(struct uart_vdev *uart)
{
if ((uart->lsr & LSR_OE) != 0 && (uart->ier & IER_ERLS) != 0)
return IIR_RLS;
else if (rxfifo_numchars(uart) > 0 && (uart->ier & IER_ERXRDY) != 0)
return IIR_RXTOUT;
else if (uart->thre_int_pending && (uart->ier & IER_ETXRDY) != 0)
return IIR_TXRDY;
else if ((uart->msr & MSR_DELTA_MASK) != 0 &&
(uart->ier & IER_EMSC) != 0)
return IIR_MLSC;
else
return IIR_NOPEND;
}
/*
* Toggle the COM port's intr pin depending on whether or not we have an
* interrupt condition to report to the processor.
*/
static void
uart_toggle_intr(struct uart_vdev *uart)
{
uint8_t intr_reason;
intr_reason = uart_intr_reason(uart);
if (intr_reason == IIR_NOPEND)
(*uart->intr_deassert)(uart->arg);
else
(*uart->intr_assert)(uart->arg);
}
static void
uart_reset(struct uart_vdev *uart)
{
uint16_t divisor;
divisor = DEFAULT_RCLK / DEFAULT_BAUD / 16;
uart->dll = divisor;
uart->dlh = divisor >> 16;
uart->msr = modem_status(uart->mcr);
rxfifo_reset(uart, 1); /* no fifo until enabled by software */
/* set the right reset state here */
uart->ier = 0;
uart->thre_int_pending = true;
uart_toggle_intr(uart);
}
static void
uart_drain(int fd, enum ev_type ev, void *arg)
{
struct uart_vdev *uart;
int ch;
uart = arg;
/*
* This routine is called in the context of the mevent thread
* to take out the uart lock to protect against concurrent
* access from a vCPU i/o exit
*/
pthread_mutex_lock(&uart->mtx);
if ((uart->mcr & MCR_LOOPBACK) != 0) {
(void) uart_backend_read(&uart->be);
} else {
/* only read tty when rxfifo available to make sure no data lost */
while (rxfifo_available(uart) && (ch = uart_backend_read(&uart->be)) != -1)
rxfifo_putchar(uart, ch);
uart_toggle_intr(uart);
}
pthread_mutex_unlock(&uart->mtx);
}
void
uart_write(struct uart_vdev *uart, int offset, uint8_t value)
{
int fifosz;
uint8_t msr;
pthread_mutex_lock(&uart->mtx);
/*
* Take care of the special case DLAB accesses first
*/
if ((uart->lcr & LCR_DLAB) != 0) {
if (offset == REG_DLL) {
uart->dll = value;
goto done;
}
if (offset == REG_DLH) {
uart->dlh = value;
goto done;
}
}
switch (offset) {
case REG_DATA:
/* THRE INT is cleared after writing data into THR register */
uart->thre_int_pending = false;
uart_toggle_intr(uart);
if (uart->mcr & MCR_LOOPBACK) {
if (rxfifo_putchar(uart, value) != 0)
uart->lsr |= LSR_OE;
} else {
uart_backend_write(&uart->be, value);
} /* else drop on floor */
/* We view the transmission is completed immediately */
uart->thre_int_pending = true;
break;
case REG_IER:
if (((uart->ier & IER_ETXRDY) == 0) &&
((value & IER_ETXRDY) != 0))
uart->thre_int_pending = true;
/*
* Apply mask so that bits 4-7 are 0
* Also enables bits 0-3 only if they're 1
*/
uart->ier = value & 0x0F;
break;
case REG_FCR:
/*
* When moving from FIFO and 16450 mode and vice versa,
* the FIFO contents are reset.
*/
if ((uart->fcr & FCR_ENABLE) ^ (value & FCR_ENABLE)) {
fifosz = (value & FCR_ENABLE) ? uart->rxfifo_size : 1;
rxfifo_reset(uart, fifosz);
}
/*
* The FCR_ENABLE bit must be '1' for the programming
* of other FCR bits to be effective.
*/
if ((value & FCR_ENABLE) == 0) {
uart->fcr = 0;
} else {
if ((value & FCR_RCV_RST) != 0)
rxfifo_reset(uart, uart->rxfifo_size);
uart->fcr = value &
(FCR_ENABLE | FCR_DMA | FCR_RX_MASK);
}
break;
case REG_LCR:
uart->lcr = value;
break;
case REG_MCR:
/* Apply mask so that bits 5-7 are 0 */
uart->mcr = value & 0x1F;
msr = modem_status(uart->mcr);
/*
* Detect if there has been any change between the
* previous and the new value of MSR. If there is
* then assert the appropriate MSR delta bit.
*/
if ((msr & MSR_CTS) ^ (uart->msr & MSR_CTS))
uart->msr |= MSR_DCTS;
if ((msr & MSR_DSR) ^ (uart->msr & MSR_DSR))
uart->msr |= MSR_DDSR;
if ((msr & MSR_DCD) ^ (uart->msr & MSR_DCD))
uart->msr |= MSR_DDCD;
if ((uart->msr & MSR_RI) != 0 && (msr & MSR_RI) == 0)
uart->msr |= MSR_TERI;
/*
* Update the value of MSR while retaining the delta
* bits.
*/
uart->msr &= MSR_DELTA_MASK;
uart->msr |= msr;
break;
case REG_LSR:
/*
* Line status register is not meant to be written to
* during normal operation.
*/
break;
case REG_MSR:
/*
* As far as I can tell MSR is a read-only register.
*/
break;
case REG_SCR:
uart->scr = value;
break;
default:
break;
}
done:
uart_toggle_intr(uart);
pthread_mutex_unlock(&uart->mtx);
}
uint8_t
uart_read(struct uart_vdev *uart, int offset)
{
uint8_t iir, intr_reason, reg;
pthread_mutex_lock(&uart->mtx);
/*
* Take care of the special case DLAB accesses first
*/
if ((uart->lcr & LCR_DLAB) != 0) {
if (offset == REG_DLL) {
reg = uart->dll;
goto done;
}
if (offset == REG_DLH) {
reg = uart->dlh;
goto done;
}
}
switch (offset) {
case REG_DATA:
reg = rxfifo_getchar(uart);
break;
case REG_IER:
reg = uart->ier;
break;
case REG_IIR:
iir = (uart->fcr & FCR_ENABLE) ? IIR_FIFO_MASK : 0;
intr_reason = uart_intr_reason(uart);
/*
* Reading the IIR register clears the THRE INT.
*/
if (intr_reason == IIR_TXRDY)
uart->thre_int_pending = false;
iir |= intr_reason;
reg = iir;
break;
case REG_LCR:
reg = uart->lcr;
break;
case REG_MCR:
reg = uart->mcr;
break;
case REG_LSR:
/* Transmitter is always ready for more data */
uart->lsr |= LSR_TEMT | LSR_THRE;
/* Check for new receive data */
if (rxfifo_numchars(uart) > 0)
uart->lsr |= LSR_RXRDY;
else
uart->lsr &= ~LSR_RXRDY;
reg = uart->lsr;
/* The LSR_OE bit is cleared on LSR read */
uart->lsr &= ~LSR_OE;
break;
case REG_MSR:
/*
* MSR delta bits are cleared on read
*/
reg = uart->msr;
uart->msr &= ~MSR_DELTA_MASK;
break;
case REG_SCR:
reg = uart->scr;
break;
default:
reg = 0xFF;
break;
}
done:
uart_toggle_intr(uart);
pthread_mutex_unlock(&uart->mtx);
return reg;
}
int
uart_legacy_alloc(int which, int *baseaddr, int *irq)
{
if (which < 0 || which >= UART_NLDEVS || uart_lres[which].inuse)
return -1;
uart_lres[which].inuse = true;
*baseaddr = uart_lres[which].baseaddr;
*irq = uart_lres[which].irq;
return 0;
}
void
uart_legacy_dealloc(int which)
{
uart_lres[which].inuse = false;
}
static struct uart_vdev *
uart_init(uart_intr_func_t intr_assert, uart_intr_func_t intr_deassert,
void *arg, int rxfifo_size)
{
struct uart_vdev *uart;
uart = calloc(1, sizeof(struct uart_vdev) + rxfifo_size);
if (uart) {
uart->arg = arg;
uart->rxfifo_size = rxfifo_size;
uart->intr_assert = intr_assert;
uart->intr_deassert = intr_deassert;
uart->rxfifo.buf = (uint8_t *)(uart + 1);
pthread_mutex_init(&uart->mtx, NULL);
uart_reset(uart);
}
return uart;
}
static void
uart_deinit(struct uart_vdev *uart)
{
if (uart)
free(uart);
}
static void
uart_sock_accept(int fd __attribute__((unused)),
enum ev_type t __attribute__((unused)),
void *arg)
{
struct uart_vdev *uart = (struct uart_vdev *)arg;
int s, flags;
s = accept(uart->be.fd, NULL, NULL);
if (s < 0) {
DPRINTF(("uart: accept error %d\n", s));
return;
}
if (uart->be.opened) {
DPRINTF(("uart: already connected\n"));
close(s);
return;
}
flags = fcntl(s, F_GETFL);
fcntl(s, F_SETFL, flags | O_NONBLOCK);
uart->be.opened = true;
uart->be.fd2 = s;
uart->be.evp2 = mevent_add(s, EVF_READ, uart_drain, uart,
uart_mevent_teardown, uart);
if (!uart->be.evp2)
WPRINTF(("uart: mevent_add evp2 failed\n"));
DPRINTF(("uart: %s\r\n", __func__));
}
static int
uart_backend_read(struct uart_backend *be)
{
unsigned char rb;
int rc = -1;
if (!be || !be->opened)
return -1;
switch (be->be_type) {
case UART_BE_STDIO:
case UART_BE_TTY:
/* fd is used to read */
rc = read(be->fd, &rb, 1);
break;
case UART_BE_SOCK:
rc = recv(be->fd2, &rb, 1, 0);
if (rc <= 0 && errno != EAGAIN) {
if (be->evp2) {
mevent_delete(be->evp2);
be->evp2 = NULL;
}
if (be->fd2 > 0) {
close(be->fd2);
be->fd2 = -1;
}
be->opened = false;
WPRINTF(("%s connection closed, rc = %d, errno = %d\n",
__func__, rc, errno));
}
break;
default:
WPRINTF(("not supported backend %d!\n", be->be_type));
}
if (rc <= 0)
return -1;
return rb;
}
static int
uart_backend_write(struct uart_backend *be, unsigned char wb)
{
int rc = -1;
if (!be || !be->opened)
return -1;
switch (be->be_type) {
case UART_BE_STDIO:
case UART_BE_TTY:
/* fd2 is used to write */
rc = write(be->fd2, &wb, 1);
break;
case UART_BE_SOCK:
rc = send(be->fd2, &wb, 1, 0);
if (rc != 1)
WPRINTF(("%s: send error, rc = %d, errno = %d\r\n",
__func__, rc, errno));
break;
default:
WPRINTF(("not supported backend %d!\n", be->be_type));
}
return rc;
}
static int
uart_reset_backend(struct uart_backend *be)
{
char flushbuf[32];
ssize_t nread;
int error;
int fd;
struct mevent *evp;
if (!be || !be->opened)
return -1;
switch (be->be_type) {
case UART_BE_STDIO:
case UART_BE_TTY:
fd = be->fd;
evp = be->evp;
break;
case UART_BE_SOCK:
fd = be->fd2;
evp = be->evp2;
break;
default:
WPRINTF(("not supported backend %d!\n", be->be_type));
return -1;
}
/* Flush any unread input from the backend device. */
while (1) {
nread = read(fd, flushbuf, sizeof(flushbuf));
if (nread != sizeof(flushbuf))
break;
}
if (evp) {
error = mevent_enable(evp);
if (error) {
WPRINTF(("mevent_enable error\n"));
return -1;
}
}
return 0;
}
static int
uart_enable_backend(struct uart_backend *be, bool enable)
{
int error;
struct mevent *evp;
if (!be || !be->opened)
return -1;
switch (be->be_type) {
case UART_BE_STDIO:
case UART_BE_TTY:
evp = be->evp;
break;
case UART_BE_SOCK:
evp = be->evp2;
break;
default:
WPRINTF(("not supported backend %d!\n", be->be_type));
return -1;
}
if (evp) {
if (enable)
error = mevent_enable(evp);
else
error = mevent_disable(evp);
if (error) {
WPRINTF(("mevent %s error\n", enable ? "enable" : "disable"));
return -1;
}
}
return 0;
}
static int
uart_open_backend(struct uart_backend *be, const char *path,
enum uart_be_type be_type)
{
int fd, rc = -1;
switch (be_type) {
case UART_BE_STDIO:
if (stdio_in_use) {
WPRINTF(("uart: stdio is used by other device\n"));
break;
}
be->fd = STDIN_FILENO;
be->fd2 = STDOUT_FILENO;
stdio_in_use = true;
rc = 0;
break;
case UART_BE_TTY:
fd = open(path, O_RDWR | O_NONBLOCK);
if (fd < 0)
WPRINTF(("uart: open failed: %s\n", path));
else if (!isatty(fd)) {
WPRINTF(("uart: not a tty: %s\n", path));
close(fd);
fd = -1;
} else {
be->fd = fd;
be->fd2 = fd;
rc = 0;
}
break;
case UART_BE_SOCK:
fd = socket(AF_INET, SOCK_STREAM | O_NONBLOCK, 0);
if (fd < 0)
WPRINTF(("uart: open socket failed\n"));
else {
be->fd = fd;
rc = 0;
}
break;
default:
WPRINTF(("not supported backend %d!\n", be_type));
}
return rc;
}
static int
uart_config_backend(struct uart_vdev *uart, struct uart_backend *be, long port)
{
int fd, flags;
struct termios tio, saved_tio;
int opt = true;
struct sockaddr_in addr;
if (!be || be->fd == -1)
return -1;
fd = be->fd;
switch (be->be_type) {
case UART_BE_TTY:
case UART_BE_STDIO:
tcgetattr(fd, &tio);
saved_tio = tio;
cfmakeraw(&tio);
tio.c_cflag |= CLOCAL;
tcflush(fd, TCIOFLUSH);
tcsetattr(fd, TCSANOW, &tio);
if (be->be_type == UART_BE_STDIO) {
flags = fcntl(fd, F_GETFL);
fcntl(fd, F_SETFL, flags | O_NONBLOCK);
tio_stdio_orig = saved_tio;
atexit(uart_reset_stdio);
}
be->opened = true;
/*
* When acrn-dm is started by acrnd as a background process,
* STDIO is redirected to journal log file. In this case epoll
* cannot be used on a regular file.
*/
if (isatty(fd)) {
be->evp = mevent_add(fd, EVF_READ, uart_drain, uart,
uart_mevent_teardown, uart);
if (!be->evp) {
WPRINTF(("uart: mevent_add failed\n"));
return -1;
}
}
break;
case UART_BE_SOCK:
if (setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (char *)&opt,
sizeof(opt)) < 0) {
WPRINTF(("uart: setsockopt failed, errno = %d\n",
errno));
return -1;
}
addr.sin_family = AF_INET;
addr.sin_addr.s_addr = INADDR_ANY;
addr.sin_port = htons(port);
if (bind(fd, (struct sockaddr *)&addr, sizeof(addr)) < 0) {
WPRINTF(("uart: bind failed, errno = %d\n",
errno));
return -1;
}
if (listen(fd, 1) < 0) {
WPRINTF(("uart: listen failed, errno = %d\n",
errno));
return -1;
}
be->opened = false;
be->evp = mevent_add(fd, EVF_READ, uart_sock_accept, uart, NULL, NULL);
if (!be->evp) {
WPRINTF(("uart: mevent_add failed\n"));
return -1;
}
break;
default:
break; /* nothing to do */
}
return 0;
}
struct uart_vdev *
uart_set_backend(uart_intr_func_t intr_assert, uart_intr_func_t intr_deassert,
void *arg, const char *opts)
{
int retval = -1;
struct uart_vdev *uart;
struct uart_backend *be = NULL;
const char *path = NULL;
enum uart_be_type be_type = UART_BE_INVALID;
char *vopts, *p;
long port = 0;
int rxfifo_size = DEFAULT_FIFOSZ;
if (opts == NULL) {
uart = uart_init(intr_assert, intr_deassert, arg,
rxfifo_size);
return uart;
}
if (strncmp(opts, "tcp", 3) == 0) {
be_type = UART_BE_SOCK;
rxfifo_size = SOCK_FIFOSZ;
vopts = strdup(opts);
if (!vopts)
goto opts_fail;
p = vopts;
if (!strsep(&p, ":") || dm_strtol(p, &p, 10, &port)) {
free(vopts);
goto opts_fail;
}
free(vopts);
vopts = NULL;
} else if (strcmp("stdio", opts) == 0) {
be_type = UART_BE_STDIO;
} else {
be_type = UART_BE_TTY;
path = opts;
}
uart = uart_init(intr_assert, intr_deassert, arg, rxfifo_size);
if (!uart)
goto init_fail;
be = &uart->be;
retval = uart_open_backend(be, path, be_type);
if (retval < 0) {
WPRINTF(("uart: open_backend failed\n"));
goto open_fail;
}
be->be_type = be_type;
if (uart_config_backend(uart, be, port) < 0) {
WPRINTF(("uart: config_backend failed\n"));
goto config_fail;
}
return uart;
config_fail:
/* for all kinds of be, be->evp2 is not initialized */
if (be->be_type == UART_BE_SOCK) {
/* there is no teardown callback for socket listen fd */
if (be->evp) {
mevent_delete(be->evp);
be->evp = NULL;
}
if (be->fd > 0) {
close(be->fd);
be->fd = -1;
}
} else if (be->evp)
mevent_delete(be->evp);
else
uart_mevent_teardown(uart);
return NULL;
open_fail:
uart_deinit(uart);
init_fail:
opts_fail:
return NULL;
}
void
uart_release_backend(struct uart_vdev *uart, const char *opts)
{
struct uart_backend *be;
if (uart == NULL)
return;
be = &uart->be;
/*
* By current design, for the invalid PTY parameters, the virtual uarts
* are still expose to UOS but all data be dropped by backend service.
* The uart backend is not setup for this case, so don't try to release
* the uart backend in here.
* TODO: need re-visit the whole policy for such scenario in future.
*/
if (opts == NULL || be->be_type == UART_BE_INVALID) {
uart_deinit(uart);
return;
}
if (be->be_type == UART_BE_SOCK) {
/* there is no teardown callback for socket listen fd */
if (be->evp) {
mevent_delete(be->evp);
be->evp = NULL;
}
if (be->fd > 0) {
close(be->fd);
be->fd = -1;
}
if (be->evp2)
mevent_delete(be->evp2);
else
uart_mevent_teardown(uart);
} else {
if (be->evp)
mevent_delete(be->evp);
else
uart_mevent_teardown(uart);
}
}