acrn-hypervisor/misc/efi-stub/boot.c

710 lines
20 KiB
C

/*
* Copyright (c) 2011 - 2022, Intel Corporation.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products
* derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <efi.h>
#include <efilib.h>
#include "efilinux.h"
#include "stdlib.h"
#include "boot.h"
#include "container.h"
EFI_SYSTEM_TABLE *sys_table;
EFI_BOOT_SERVICES *boot;
EFI_RUNTIME_SERVICES *runtime;
HV_LOADER hvld;
EFI_STATUS
get_efi_memmap(struct efi_memmap_info *mi, int size_only)
{
UINTN map_size, map_key;
UINT32 desc_version;
UINTN desc_size;
EFI_MEMORY_DESCRIPTOR *map_buf;
EFI_STATUS err = EFI_SUCCESS;
/* We're just interested in the map's size for now */
map_size = 0;
err = get_memory_map(&map_size, NULL, NULL, &desc_size, NULL);
if (err != EFI_SUCCESS && err != EFI_BUFFER_TOO_SMALL)
goto out;
if (size_only) {
mi->map_size = map_size;
mi->desc_size = desc_size;
return err;
}
again:
err = allocate_pool(EfiLoaderData, map_size, (void **) &map_buf);
if (err != EFI_SUCCESS)
goto out;
/*
* Remember! We've already allocated map_buf with emalloc (and
* 'map_size' contains its size) which means that it should be
* positioned below our allocation for the kernel. Use that
* space for the memory map.
*/
err = get_memory_map(&map_size, map_buf, &map_key,
&desc_size, &desc_version);
if (err != EFI_SUCCESS) {
if (err == EFI_BUFFER_TOO_SMALL) {
/*
* Argh! The buffer that we allocated further
* up wasn't large enough which means we need
* to allocate them again, but this time
* larger. 'map_size' has been updated by the
* call to memory_map().
*/
free_pool(map_buf);
goto again;
}
goto out;
}
mi->map_size = map_size;
mi->map_key = map_key;
mi->desc_version = desc_version;
mi->desc_size = desc_size;
mi->mmap = map_buf;
out:
return err;
}
static EFI_STATUS
set_mor_bit()
{
EFI_STATUS err;
UINT32 attrs;
UINTN size = 1;
uint8_t data = 0;
EFI_GUID efi_var_morctl_guid = EFI_VAR_MORCTL_GUID;
#ifdef MORCTRL_LOCK_ENABLED
EFI_GUID efi_var_morctllock_guid = EFI_VAR_MORCTLLOCK_GUID;
#endif
/*
* Per TCG Platform Reset Attack Mitigation Spec 1.10 rev 17, Chp 4.1
* MORCtrl is a 1-byte unsigned number and should be created by the firmware.
*/
err = get_variable(EFI_VAR_MORCTL_NAME, &efi_var_morctl_guid, &attrs, &size, (void *)&data);
if (err != EFI_SUCCESS) {
if (err == EFI_BUFFER_TOO_SMALL) {
Print(L"Wrong MORCtrl variable size: 0x%x byte, should be 1 byte\n", size);
} else if (err == EFI_NOT_FOUND) {
Print(L"Warning: MORCtrl variable not found\n");
}
goto out;
}
if (attrs != (EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_RUNTIME_ACCESS)) {
Print(L"Wrong MORCtrl attributes: 0x%x\n", attrs);
goto out;
}
/* Bit 0 set: Firmware MUST set the MOR bit */
/* Bit 4 cleared: Firmware MAY autodetect a clean shutdown of the Static RTM OS. */
data = 0x1;
err = set_variable(EFI_VAR_MORCTL_NAME, &efi_var_morctl_guid, attrs, size, &data);
if (err != EFI_SUCCESS)
goto out;
#ifdef MORCTRL_LOCK_ENABLED
/*
* MORCTRL_LOCK_ENABLED is NOT part of the board configuration.
* To activate MORCTRL_LOCK_ENABLED, manually add -DMORCTRL_LOCK_ENABLED to the CFLAGS.
*/
/* Lock MORCtrl with MORCtrlLock */
size = 1;
err = get_variable(EFI_VAR_MORCTLLOCK_NAME, &efi_var_morctllock_guid, &attrs, &size, (void *)&data);
if (err != EFI_SUCCESS)
goto out;
if (attrs != (EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_RUNTIME_ACCESS)) {
Print(L"Wrong MORCtrlLock attributes: 0x%x\n", attrs);
goto out;
}
if (data == 0x1 || data == 0x2) {
Print(L"Warning: MORCtrl already locked. No locking operation performed.\n");
goto out;
}
/*
* Input value 1, size 1: Lock without key
* Try to lock MemoryOverwriteRequestControlLock and MemoryOverwriteRequestControl
* If success, MORCtrl and MORCtrlLock will be read-only until next boot, and reboot
* is the only way to unlock these variables.
*/
data = 0x1;
size = 0x1;
err = set_variable(EFI_VAR_MORCTLLOCK_NAME, &efi_var_morctllock_guid, attrs, size, (void *)&data);
if (err != EFI_SUCCESS)
goto out;
#endif
out:
return err;
}
static EFI_STATUS
terminate_boot_services(EFI_HANDLE image, struct efi_memmap_info *mmap_info)
{
EFI_STATUS err = EFI_SUCCESS;
err = exit_boot_services(image, mmap_info->map_key);
if (err != EFI_SUCCESS) {
if (err == EFI_INVALID_PARAMETER) {
/*
* Incorrect map key: memory map changed during the call of get_memory_map
* and exit_boot_services.
* We must call get_memory_map and exit_boot_services one more time.
* We can't allocate nor free pool since exit_boot_services has already been called.
* Original memory pool should be sufficient and this call is expected to succeed.
*/
err = get_memory_map(&mmap_info->map_size, mmap_info->mmap,
&mmap_info->map_key, &mmap_info->desc_size, &mmap_info->desc_version);
if (err != EFI_SUCCESS)
goto out;
err = exit_boot_services(image, mmap_info->map_key);
if (err != EFI_SUCCESS)
goto out;
}
}
out:
return err;
}
static inline void hv_jump(EFI_PHYSICAL_ADDRESS hv_entry, uint32_t mbi, int32_t magic)
{
asm volatile (
"cli\n\t"
"jmp *%2\n\t"
:
: "a"(magic), "b"(mbi), "r"(hv_entry)
);
}
static EFI_STATUS
fill_e820(HV_LOADER hvld, struct efi_memmap_info *mmap_info,
struct multiboot_mmap *mmap, int32_t *e820_count)
{
EFI_STATUS err = EFI_SUCCESS;
uint32_t mmap_entry_count = mmap_info->map_size / mmap_info->desc_size;
int32_t i, j;
/*
* Convert the EFI memory map to E820.
*/
for (i = 0, j = 0; i < mmap_entry_count && j < MBOOT_MMAP_NUMS - 1; i++) {
EFI_MEMORY_DESCRIPTOR *d;
uint32_t e820_type = 0;
d = (EFI_MEMORY_DESCRIPTOR *)((uint64_t)mmap_info->mmap + \
(i * mmap_info->desc_size));
switch(d->Type) {
case EfiReservedMemoryType:
case EfiRuntimeServicesCode:
case EfiRuntimeServicesData:
case EfiMemoryMappedIO:
case EfiMemoryMappedIOPortSpace:
case EfiPalCode:
e820_type = E820_RESERVED;
break;
case EfiUnusableMemory:
e820_type = E820_UNUSABLE;
break;
case EfiACPIReclaimMemory:
e820_type = E820_ACPI;
break;
case EfiLoaderCode:
case EfiLoaderData:
case EfiBootServicesCode:
case EfiBootServicesData:
case EfiConventionalMemory:
e820_type = E820_RAM;
break;
case EfiACPIMemoryNVS:
e820_type = E820_NVS;
break;
default:
continue;
}
if ((j != 0) && mmap[j-1].mm_type == e820_type &&
(mmap[j-1].mm_base_addr + mmap[j-1].mm_length)
== d->PhysicalStart) {
mmap[j-1].mm_length += d->NumberOfPages << EFI_PAGE_SHIFT;
} else {
mmap[j].mm_base_addr = d->PhysicalStart;
mmap[j].mm_length = d->NumberOfPages << EFI_PAGE_SHIFT;
mmap[j].mm_type = e820_type;
j++;
}
}
/*
* if we haven't gone through all the mmap table entries,
* there must be a memory overwrite if we continue,
* so just abort anyway.
*/
if (i < mmap_entry_count) {
Print(L": bios provides %d mmap entries which is beyond limitation[%d]\n",
mmap_entry_count, MBOOT_MMAP_NUMS-1);
err = EFI_INVALID_PARAMETER;
goto out;
}
/* switch hv memory region(0x20000000 ~ 0x22000000) to
* available RAM in e820 table
*/
mmap[j].mm_base_addr = hvld->get_hv_hpa(hvld);
mmap[j].mm_length = hvld->get_hv_ram_size(hvld);
mmap[j].mm_type = E820_RAM;
j++;
mmap[j].mm_base_addr = hvld->get_mod_hpa(hvld);
mmap[j].mm_length = hvld->get_total_modsize(hvld);
mmap[j].mm_type = E820_RAM;
j++;
*e820_count = j;
out:
return err;
}
EFI_STATUS construct_mbi(HV_LOADER hvld, struct multiboot_info **mbinfo, struct efi_memmap_info *mmap_info)
{
EFI_STATUS err = EFI_SUCCESS;
int32_t e820_count = 0;
EFI_PHYSICAL_ADDRESS addr;
struct multiboot_mmap *mmap;
struct multiboot_info *mbi;
char *uefi_boot_loader_name;
static const char loader_name[BOOT_LOADER_NAME_SIZE] = UEFI_BOOT_LOADER_NAME;
err = allocate_pool(EfiLoaderData, EFI_BOOT_MEM_SIZE, (VOID *)&addr);
if (err != EFI_SUCCESS) {
Print(L"Failed to allocate memory for EFI boot\n");
goto out;
}
(void)memset((void *)addr, 0x0, EFI_BOOT_MEM_SIZE);
mmap = MBOOT_MMAP_PTR(addr);
mbi = MBOOT_INFO_PTR(addr);
uefi_boot_loader_name = BOOT_LOADER_NAME_PTR(addr);
memcpy(uefi_boot_loader_name, loader_name, BOOT_LOADER_NAME_SIZE);
err = get_efi_memmap(mmap_info, 0);
if (err != EFI_SUCCESS)
goto out;
err = fill_e820(hvld, mmap_info, mmap, &e820_count);
if (err != EFI_SUCCESS)
goto out;
mbi->mi_cmdline = (UINTN)hvld->get_boot_cmd(hvld);
mbi->mi_mmap_addr = (UINTN)mmap;
mbi->mi_mmap_length = e820_count*sizeof(struct multiboot_mmap);
mbi->mi_flags |= MULTIBOOT_INFO_HAS_MMAP | MULTIBOOT_INFO_HAS_CMDLINE;
/* Set boot loader name in the multiboot header of UEFI, this name is used by hypervisor;
* The host physical start address of boot loader name is stored in multiboot header.
*/
mbi->mi_flags |= MULTIBOOT_INFO_HAS_LOADER_NAME;
mbi->mi_loader_name = (UINT32)(uint64_t)uefi_boot_loader_name;
mbi->mi_mods_addr = hvld->get_mod_hpa(hvld);
mbi->mi_mods_count = hvld->get_mod_count(hvld);
mbi->mi_flags |= MULTIBOOT_INFO_HAS_MODS;
*mbinfo = mbi;
out:
return err;
}
static struct acpi_table_rsdp *
search_rsdp()
{
unsigned i;
struct acpi_table_rsdp *rsdp = NULL;
EFI_CONFIGURATION_TABLE *config_table = sys_table->ConfigurationTable;
for (i = 0; i < sys_table->NumberOfTableEntries; i++) {
EFI_GUID acpi_20_table_guid = ACPI_20_TABLE_GUID;
EFI_GUID acpi_table_guid = ACPI_TABLE_GUID;
if (CompareGuid(&acpi_20_table_guid,
&config_table->VendorGuid) == 0) {
rsdp = config_table->VendorTable;
break;
}
if (CompareGuid(&acpi_table_guid,
&config_table->VendorGuid) == 0)
rsdp = config_table->VendorTable;
config_table++;
}
return rsdp;
}
static uint32_t
get_mbi2_size(HV_LOADER hvld, struct efi_memmap_info *mmap_info, uint32_t rsdp_length)
{
uint32_t mmap_entry_count = mmap_info->map_size / mmap_info->desc_size;
return 2 * sizeof(uint32_t) \
/* Boot command line */
+ (sizeof(struct multiboot2_tag_string) + \
ALIGN_UP(hvld->get_boot_cmdsize(hvld), MULTIBOOT2_TAG_ALIGN)) \
/* Boot loader name */
+ (sizeof(struct multiboot2_tag_string) + \
ALIGN_UP(BOOT_LOADER_NAME_SIZE, MULTIBOOT2_TAG_ALIGN)) \
/* Modules */
+ (hvld->get_mod_count(hvld) * sizeof(struct multiboot2_tag_module) + \
hvld->get_total_modcmdsize(hvld)) \
/* Memory Map */
+ ALIGN_UP((sizeof(struct multiboot2_tag_mmap) + \
mmap_entry_count * sizeof(struct multiboot2_mmap_entry)), MULTIBOOT2_TAG_ALIGN) \
/* ACPI new */
+ ALIGN_UP(sizeof(struct multiboot2_tag_new_acpi) + \
rsdp_length, MULTIBOOT2_TAG_ALIGN) \
/* EFI64 system table */
+ ALIGN_UP(sizeof(struct multiboot2_tag_efi64), MULTIBOOT2_TAG_ALIGN) \
/* EFI memmap: Add an extra page since UEFI can alter the memory map */
+ ALIGN_UP(sizeof(struct multiboot2_tag_efi_mmap) + \
ALIGN_UP(mmap_info->map_size + 0x1000, 0x1000), MULTIBOOT2_TAG_ALIGN) \
/* END */
+ sizeof(struct multiboot2_tag);
}
EFI_STATUS
construct_mbi2(struct hv_loader *hvld, void **mbi_addr, struct efi_memmap_info *mmap_info)
{
uint64_t *mbistart;
uint64_t *p;
uint32_t mbi2_size;
struct multiboot_mmap *mmap;
struct acpi_table_rsdp *rsdp;
EFI_STATUS err;
rsdp = search_rsdp();
if (!rsdp)
return EFI_NOT_FOUND;
/* Get size only for mbi size calculation */
err = get_efi_memmap(mmap_info, 1);
if (err != EFI_SUCCESS && err != EFI_BUFFER_TOO_SMALL)
return err;
mbi2_size = get_mbi2_size(hvld, mmap_info, rsdp->length);
/* per UEFI spec v2.9: This allocation is guaranteed to be 8-bytes aligned */
err = allocate_pool(EfiLoaderData, mbi2_size, (void **)&mbistart);
if (err != EFI_SUCCESS)
goto out;
memset(mbistart, 0x0, mbi2_size);
/* Allocate temp buffer to hold memory map */
err = allocate_pool(EfiLoaderData,
(mmap_info->map_size / mmap_info->desc_size) * sizeof(struct multiboot_mmap),
(void **)&mmap);
if (err != EFI_SUCCESS)
goto out;
/*
* Get full memory map again.
* We have just allocated memory and the mmap_info will be different.
*/
err = get_efi_memmap(mmap_info, 0);
if (err != EFI_SUCCESS)
goto out;
/* total_size and reserved */
p = mbistart;
p += (2 * sizeof(uint32_t)) / sizeof(uint64_t);
/* Boot command line */
{
struct multiboot2_tag_string *tag = (struct multiboot2_tag_string *)p;
UINTN cmdline_size = hvld->get_boot_cmdsize(hvld);
tag->type = MULTIBOOT2_TAG_TYPE_CMDLINE;
tag->size = sizeof(struct multiboot2_tag_string) + cmdline_size;
memcpy(tag->string, hvld->get_boot_cmd(hvld), cmdline_size);
p += ALIGN_UP(tag->size, MULTIBOOT2_TAG_ALIGN) / sizeof(uint64_t);
}
/* Boot loader name */
{
struct multiboot2_tag_string *tag = (struct multiboot2_tag_string *)p;
tag->type = MULTIBOOT2_TAG_TYPE_BOOT_LOADER_NAME;
tag->size = sizeof(struct multiboot2_tag_string) + BOOT_LOADER_NAME_SIZE;
memcpy(tag->string, UEFI_BOOT_LOADER_NAME, BOOT_LOADER_NAME_SIZE);
p += ALIGN_UP(tag->size, MULTIBOOT2_TAG_ALIGN) / sizeof(uint64_t);
}
/* Modules */
{
unsigned i;
uint32_t mod_count = hvld->get_mod_count(hvld);
for (i = 0; i < mod_count; i++) {
struct multiboot2_tag_module *tag = (struct multiboot2_tag_module *)p;
MB_MODULE_INFO *modinfo = hvld->get_mods_info(hvld, i);
tag->type = MULTIBOOT2_TAG_TYPE_MODULE;
tag->size = sizeof(struct multiboot2_tag_module) + modinfo->cmdsize;
tag->mod_start = modinfo->mod_start;
tag->mod_end = modinfo->mod_end;
memcpy(tag->cmdline, modinfo->cmd, modinfo->cmdsize);
p += ALIGN_UP(tag->size, MULTIBOOT2_TAG_ALIGN) / sizeof(uint64_t);
}
}
/* Memory map */
{
unsigned i;
struct multiboot2_tag_mmap *tag = (struct multiboot2_tag_mmap *)p;
struct multiboot2_mmap_entry *e;
int32_t e820_count = 0;
err = fill_e820(hvld, mmap_info, mmap, &e820_count);
if (err != EFI_SUCCESS)
goto out;
tag->type = MULTIBOOT2_TAG_TYPE_MMAP;
tag->size = sizeof(struct multiboot2_tag_mmap) + sizeof(struct multiboot2_mmap_entry) * e820_count;
tag->entry_size = sizeof(struct multiboot2_mmap_entry);
tag->entry_version = 0;
for (i = 0, e = (struct multiboot2_mmap_entry *)tag->entries; i < e820_count; i++) {
e->addr = mmap[i].mm_base_addr;
e->len = mmap[i].mm_length;
e->type = mmap[i].mm_type;
e->zero = 0;
e = (struct multiboot2_mmap_entry *)((char *)e + sizeof(struct multiboot2_mmap_entry));
}
p += ALIGN_UP(tag->size, MULTIBOOT2_TAG_ALIGN) / sizeof(uint64_t);
}
/* ACPI new */
{
struct multiboot2_tag_new_acpi *tag = (struct multiboot2_tag_new_acpi *)p;
tag->type = MULTIBOOT2_TAG_TYPE_ACPI_NEW;
tag->size = sizeof(struct multiboot2_tag_new_acpi) + rsdp->length;
memcpy((char *)tag->rsdp, (char *)rsdp, rsdp->length);
p += ALIGN_UP(tag->size, MULTIBOOT2_TAG_ALIGN) / sizeof(uint64_t);
}
/* EFI64 system table */
{
struct multiboot2_tag_efi64 *tag = (struct multiboot2_tag_efi64 *)p;
tag->type = MULTIBOOT2_TAG_TYPE_EFI64;
tag->size = sizeof(struct multiboot2_tag_efi64);
tag->pointer = (uint64_t)sys_table;
p += ALIGN_UP(tag->size, MULTIBOOT2_TAG_ALIGN) / sizeof(uint64_t);
}
/* EFI memory map */
{
struct multiboot2_tag_efi_mmap *tag = (struct multiboot2_tag_efi_mmap *)p;
tag->type = MULTIBOOT2_TAG_TYPE_EFI_MMAP;
tag->size = sizeof(struct multiboot2_tag_efi_mmap) + mmap_info->map_size;
tag->descr_size = mmap_info->desc_size;
tag->descr_vers = mmap_info->desc_version;
memcpy((char *)tag->efi_mmap, (char *)mmap_info->mmap, mmap_info->map_size);
p += ALIGN_UP(tag->size, MULTIBOOT2_TAG_ALIGN) / sizeof(uint64_t);
}
/* END */
{
struct multiboot2_tag *tag = (struct multiboot2_tag *)p;
tag->type = MULTIBOOT2_TAG_TYPE_END;
tag->size = sizeof(struct multiboot2_tag);
p += ALIGN_UP(tag->size, MULTIBOOT2_TAG_ALIGN) / sizeof(uint64_t);
}
((uint32_t *)mbistart)[0] = (uint64_t)((char *)p - (char *)mbistart);
((uint32_t *)mbistart)[1] = 0;
*mbi_addr = (void *)mbistart;
return EFI_SUCCESS;
out:
free_pool(mbistart);
return err;
}
static EFI_STATUS
run_acrn(EFI_HANDLE image, HV_LOADER hvld)
{
EFI_STATUS err;
struct efi_memmap_info memmapinfo;
void *mbi;
int32_t mb_version = hvld->get_multiboot_version(hvld);
err = set_mor_bit();
/* If MOR not supported, emit a warning and proceed */
if (err != EFI_SUCCESS && err != EFI_NOT_FOUND)
goto out;
if (mb_version == 2) {
err = construct_mbi2(hvld, &mbi, &memmapinfo);
}
else {
err = construct_mbi(hvld, (struct multiboot_info **)&mbi, &memmapinfo);
}
if (err != EFI_SUCCESS)
goto out;
err = terminate_boot_services(image, &memmapinfo);
if (err != EFI_SUCCESS)
goto out;
hv_jump(hvld->get_hv_entry(hvld), (uint32_t)(uint64_t)mbi,
mb_version == 2 ? MULTIBOOT2_INFO_MAGIC : MULTIBOOT_INFO_MAGIC);
/* Not reached on success */
out:
return err;
}
/**
* efi_main - The entry point for the OS loader image.
* @image: firmware-allocated handle that identifies the image
* @sys_table: EFI system table
*/
EFI_STATUS
efi_main(EFI_HANDLE image, EFI_SYSTEM_TABLE *_table)
{
WCHAR *error_buf;
EFI_STATUS err;
EFI_LOADED_IMAGE *info;
EFI_STATUS (*hvld_init)(EFI_LOADED_IMAGE *, HV_LOADER *);
INTN index;
InitializeLib(image, _table);
sys_table = _table;
boot = sys_table->BootServices;
runtime = sys_table->RuntimeServices;
if (CheckCrc(sys_table->Hdr.HeaderSize, &sys_table->Hdr) != TRUE)
return EFI_LOAD_ERROR;
err = handle_protocol(image, &LoadedImageProtocol, (void **)&info);
if (err != EFI_SUCCESS)
goto failed;
/* We may support other containers in the future */
hvld_init = container_init;
/*
* Load hypervisor boot image handler. Currently Slim Bootloader
* compatible embedded container format is supported. File system
* mode to come future.
*/
err = hvld_init(info, &hvld);
if (err != EFI_SUCCESS) {
Print(L"Unable to init container library %r ", err);
goto failed;
}
err = hvld->load_boot_image(hvld);
if (err != EFI_SUCCESS) {
Print(L"Unable to load ACRNHV Image %r ", err);
goto failed;
}
err = hvld->load_modules(hvld);
if (err != EFI_SUCCESS) {
Print(L"Unable to load VM modules %r ", err);
goto failed;
}
err = run_acrn(image, hvld);
if (err != EFI_SUCCESS)
goto failed;
return EFI_SUCCESS;
failed:
if (hvld) {
hvld->deinit(hvld);
}
/*
* We need to be careful not to trash 'err' here. If we fail
* to allocate enough memory to hold the error string fallback
* to returning 'err'.
*/
if (allocate_pool(EfiLoaderData, ERROR_STRING_LENGTH,
(void **)&error_buf) != EFI_SUCCESS) {
Print(L"Couldn't allocate pages for error string\n");
return err;
}
StatusToString(error_buf, err);
Print(L": %s\n", error_buf);
/* If we don't wait for user input, (s)he will not see the error message */
uefi_call_wrapper(sys_table->ConOut->OutputString, 2, sys_table->ConOut, \
L"\r\n\r\n\r\nHit any key to exit\r\n");
uefi_call_wrapper(sys_table->BootServices->WaitForEvent, 3, 1, \
&sys_table->ConIn->WaitForKey, &index);
return exit(image, err, ERROR_STRING_LENGTH, error_buf);
}