acrn-hypervisor/hypervisor/common/vm_load.c

193 lines
5.8 KiB
C

/*
* Copyright (C) 2018 Intel Corporation. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <vm.h>
#include <e820.h>
#include <zeropage.h>
#include <boot_context.h>
#include <ept.h>
#include <mmu.h>
#include <multiboot.h>
#include <errno.h>
#include <sprintf.h>
#include <logmsg.h>
#define NUM_REMAIN_1G_PAGES 3UL
static void prepare_bsp_gdt(struct acrn_vm *vm)
{
size_t gdt_len;
uint64_t gdt_base_hpa;
gdt_base_hpa = gpa2hpa(vm, boot_context.gdt.base);
if (boot_context.gdt.base != gdt_base_hpa) {
gdt_len = ((size_t)boot_context.gdt.limit + 1U) / sizeof(uint8_t);
(void)copy_to_gpa(vm, hpa2hva(boot_context.gdt.base), boot_context.gdt.base, gdt_len);
}
return;
}
/**
* @pre zp != NULL && vm != NULL
*/
static uint32_t create_zeropage_e820(struct zero_page *zp, const struct acrn_vm *vm)
{
uint32_t entry_num = vm->e820_entry_num;
struct e820_entry *zp_e820 = zp->entries;
struct e820_entry *vm_e820 = vm->e820_entries;
if ((zp_e820 == NULL) || (vm_e820 == NULL) || (entry_num == 0U) || (entry_num > E820_MAX_ENTRIES)) {
pr_err("e820 create error");
entry_num = 0U;
} else {
(void)memcpy_s((void *)zp_e820, entry_num * sizeof(struct e820_entry),
(void *)vm_e820, entry_num * sizeof(struct e820_entry));
}
return entry_num;
}
static uint64_t create_zero_page(struct acrn_vm *vm)
{
struct zero_page *zeropage;
struct sw_linux *linux_info = &(vm->sw.linux_info);
struct sw_kernel_info *sw_kernel = &(vm->sw.kernel_info);
struct zero_page *hva;
uint64_t gpa, addr;
/* Set zeropage in Linux Guest RAM region just past boot args */
gpa = (uint64_t)linux_info->bootargs_load_addr + MEM_4K;
hva = (struct zero_page *)gpa2hva(vm, gpa);
zeropage = hva;
stac();
/* clear the zeropage */
(void)memset(zeropage, 0U, MEM_2K);
/* copy part of the header into the zero page */
hva = (struct zero_page *)gpa2hva(vm, (uint64_t)sw_kernel->kernel_load_addr);
(void)memcpy_s(&(zeropage->hdr), sizeof(zeropage->hdr),
&(hva->hdr), sizeof(hva->hdr));
/* See if kernel has a RAM disk */
if (linux_info->ramdisk_src_addr != NULL) {
/* Copy ramdisk load_addr and size in zeropage header structure
*/
addr = (uint64_t)linux_info->ramdisk_load_addr;
zeropage->hdr.ramdisk_addr = (uint32_t)addr;
zeropage->hdr.ramdisk_size = (uint32_t)linux_info->ramdisk_size;
}
/* Copy bootargs load_addr in zeropage header structure */
addr = (uint64_t)linux_info->bootargs_load_addr;
zeropage->hdr.bootargs_addr = (uint32_t)addr;
/* set constant arguments in zero page */
zeropage->hdr.loader_type = 0xffU;
zeropage->hdr.load_flags |= (1U << 5U); /* quiet */
/* Create/add e820 table entries in zeropage */
zeropage->e820_nentries = (uint8_t)create_zeropage_e820(zeropage, vm);
clac();
/* Return Physical Base Address of zeropage */
return gpa;
}
int32_t general_sw_loader(struct acrn_vm *vm)
{
int32_t ret = 0;
char dyn_bootargs[100] = {0};
uint32_t kernel_entry_offset;
struct zero_page *zeropage;
struct sw_linux *linux_info = &(vm->sw.linux_info);
struct sw_kernel_info *sw_kernel = &(vm->sw.kernel_info);
/* get primary vcpu */
struct acrn_vcpu *vcpu = vcpu_from_vid(vm, BOOT_CPU_ID);
const struct acrn_vm_config *vm_config = get_vm_config(vm->vm_id);
pr_dbg("Loading guest to run-time location");
prepare_bsp_gdt(vm);
set_vcpu_regs(vcpu, &boot_context);
/* calculate the kernel entry point */
zeropage = (struct zero_page *)sw_kernel->kernel_src_addr;
stac();
kernel_entry_offset = (uint32_t)(zeropage->hdr.setup_sects + 1U) * 512U;
clac();
if (vcpu->arch.cpu_mode == CPU_MODE_64BIT) {
/* 64bit entry is the 512bytes after the start */
kernel_entry_offset += 512U;
}
sw_kernel->kernel_entry_addr = (void *)((uint64_t)sw_kernel->kernel_load_addr + kernel_entry_offset);
/* Set VCPU entry point to kernel entry */
vcpu_set_rip(vcpu, (uint64_t)sw_kernel->kernel_entry_addr);
pr_info("%s, VM %hu VCPU %hu Entry: 0x%016llx ", __func__, vm->vm_id, vcpu->vcpu_id,
sw_kernel->kernel_entry_addr);
/* Copy the guest kernel image to its run-time location */
(void)copy_to_gpa(vm, sw_kernel->kernel_src_addr,
(uint64_t)sw_kernel->kernel_load_addr, sw_kernel->kernel_size);
/* See if guest is a Linux guest */
if (vm->sw.kernel_type == VM_LINUX_GUEST) {
uint32_t i;
/* Documentation states: ebx=0, edi=0, ebp=0, esi=ptr to
* zeropage
*/
for (i = 0U; i < NUM_GPRS; i++) {
vcpu_set_gpreg(vcpu, i, 0UL);
}
/* Copy Guest OS bootargs to its load location */
(void)copy_to_gpa(vm, linux_info->bootargs_src_addr,
(uint64_t)linux_info->bootargs_load_addr,
(strnlen_s((char *)linux_info->bootargs_src_addr, MAX_BOOTARGS_SIZE) + 1U));
/* add "hugepagesz=1G hugepages=x" to cmdline for 1G hugepage
* reserving. Current strategy is "total_mem_size in Giga -
* remained 1G pages" for reserving.
*/
if (is_sos_vm(vm)) {
int64_t reserving_1g_pages;
reserving_1g_pages = (vm_config->memory.size >> 30U) - NUM_REMAIN_1G_PAGES;
if (reserving_1g_pages > 0) {
snprintf(dyn_bootargs, 100U, " hugepagesz=1G hugepages=%lld", reserving_1g_pages);
(void)copy_to_gpa(vm, dyn_bootargs, ((uint64_t)linux_info->bootargs_load_addr
+ linux_info->bootargs_size),
(strnlen_s(dyn_bootargs, 99U) + 1U));
}
}
/* Check if a RAM disk is present with Linux guest */
if (linux_info->ramdisk_src_addr != NULL) {
/* Copy RAM disk to its load location */
(void)copy_to_gpa(vm, linux_info->ramdisk_src_addr,
(uint64_t)linux_info->ramdisk_load_addr,
linux_info->ramdisk_size);
}
/* Create Zeropage and copy Physical Base Address of Zeropage
* in RSI
*/
vcpu_set_gpreg(vcpu, CPU_REG_RSI, create_zero_page(vm));
pr_info("%s, RSI pointing to zero page for VM %d at GPA %X",
__func__, vm->vm_id, vcpu_get_gpreg(vcpu, CPU_REG_RSI));
} else {
pr_err("%s, Loading VM SW failed", __func__);
ret = -EINVAL;
}
return ret;
}