acrn-hypervisor/hypervisor/arch/x86/cpu.c

917 lines
22 KiB
C

/*
* Copyright (C) 2018 Intel Corporation. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <hypervisor.h>
#include <schedule.h>
#include <version.h>
#ifdef CONFIG_EFI_STUB
#include <acrn_efi.h>
#endif
spinlock_t trampoline_spinlock = {
.head = 0,
.tail = 0
};
spinlock_t up_count_spinlock = {
.head = 0,
.tail = 0
};
struct per_cpu_region *per_cpu_data_base_ptr;
int phy_cpu_num = 0;
unsigned long pcpu_sync = 0;
volatile uint32_t up_count = 0;
/* physical cpu active bitmap, support up to 64 cpus */
uint64_t pcpu_active_bitmap = 0;
uint64_t trampoline_start16_paddr;
/* TODO: add more capability per requirement */
/*APICv features*/
#define VAPIC_FEATURE_VIRT_ACCESS (1U << 0)
#define VAPIC_FEATURE_VIRT_REG (1U << 1)
#define VAPIC_FEATURE_INTR_DELIVERY (1U << 2)
#define VAPIC_FEATURE_TPR_SHADOW (1U << 3)
#define VAPIC_FEATURE_POST_INTR (1U << 4)
#define VAPIC_FEATURE_VX2APIC_MODE (1U << 5)
struct cpu_capability {
uint8_t vapic_features;
};
static struct cpu_capability cpu_caps;
struct cpuinfo_x86 boot_cpu_data;
static void vapic_cap_detect(void);
static void cpu_xsave_init(void);
static void cpu_set_logical_id(uint32_t logical_id);
static void print_hv_banner(void);
int cpu_find_logical_id(uint32_t lapic_id);
static void pcpu_sync_sleep(unsigned long *sync, int mask_bit);
int ibrs_type;
inline bool cpu_has_cap(uint32_t bit)
{
int feat_idx = bit >> 5;
int feat_bit = bit & 0x1fU;
if (feat_idx >= FEATURE_WORDS)
return false;
return !!(boot_cpu_data.cpuid_leaves[feat_idx] & (1 << feat_bit));
}
static inline bool get_monitor_cap(void)
{
if (cpu_has_cap(X86_FEATURE_MONITOR)) {
/* don't use monitor for CPU (family: 0x6 model: 0x5c)
* in hypervisor, but still expose it to the guests and
* let them handle it correctly
*/
if (boot_cpu_data.x86 != 0x6 || boot_cpu_data.x86_model != 0x5c)
return true;
}
return false;
}
static uint64_t get_address_mask(uint8_t limit)
{
return ((1UL << limit) - 1UL) & CPU_PAGE_MASK;
}
static void get_cpu_capabilities(void)
{
uint32_t eax, unused;
uint32_t family, model;
cpuid(CPUID_VENDORSTRING,
&boot_cpu_data.cpuid_level,
&unused, &unused, &unused);
cpuid(CPUID_FEATURES, &eax, &unused,
&boot_cpu_data.cpuid_leaves[FEAT_1_ECX],
&boot_cpu_data.cpuid_leaves[FEAT_1_EDX]);
family = (eax >> 8) & 0xffU;
if (family == 0xFU)
family += (eax >> 20) & 0xffU;
boot_cpu_data.x86 = family;
model = (eax >> 4) & 0xfU;
if (family >= 0x06U)
model += ((eax >> 16) & 0xfU) << 4;
boot_cpu_data.x86_model = model;
cpuid(CPUID_EXTEND_FEATURE, &unused,
&boot_cpu_data.cpuid_leaves[FEAT_7_0_EBX],
&boot_cpu_data.cpuid_leaves[FEAT_7_0_ECX],
&boot_cpu_data.cpuid_leaves[FEAT_7_0_EDX]);
cpuid(CPUID_MAX_EXTENDED_FUNCTION,
&boot_cpu_data.extended_cpuid_level,
&unused, &unused, &unused);
if (boot_cpu_data.extended_cpuid_level >= CPUID_EXTEND_FUNCTION_1)
cpuid(CPUID_EXTEND_FUNCTION_1, &unused, &unused,
&boot_cpu_data.cpuid_leaves[FEAT_8000_0001_ECX],
&boot_cpu_data.cpuid_leaves[FEAT_8000_0001_EDX]);
if (boot_cpu_data.extended_cpuid_level >= CPUID_EXTEND_ADDRESS_SIZE) {
cpuid(CPUID_EXTEND_ADDRESS_SIZE, &eax,
&boot_cpu_data.cpuid_leaves[FEAT_8000_0008_EBX],
&unused, &unused);
/* EAX bits 07-00: #Physical Address Bits
* bits 15-08: #Linear Address Bits
*/
boot_cpu_data.x86_virt_bits = (eax >> 8) & 0xffU;
boot_cpu_data.x86_phys_bits = eax & 0xffU;
boot_cpu_data.physical_address_mask =
get_address_mask(boot_cpu_data.x86_phys_bits);
}
/* For speculation defence.
* The default way is to set IBRS at vmexit and then do IBPB at vcpu
* context switch(ibrs_type == IBRS_RAW).
* Now provide an optimized way (ibrs_type == IBRS_OPT) which set
* STIBP and do IBPB at vmexit,since having STIBP always set has less
* impact than having IBRS always set. Also since IBPB is already done
* at vmexit, it is no necessary to do so at vcpu context switch then.
*/
ibrs_type = IBRS_NONE;
/* Currently for APL, if we enabled retpoline, then IBRS should not
* take effect
* TODO: add IA32_ARCH_CAPABILITIES[1] check, if this bit is set, IBRS
* should be set all the time instead of relying on retpoline
*/
#ifndef CONFIG_RETPOLINE
if (cpu_has_cap(X86_FEATURE_IBRS_IBPB)) {
ibrs_type = IBRS_RAW;
if (cpu_has_cap(X86_FEATURE_STIBP))
ibrs_type = IBRS_OPT;
}
#endif
}
/*
* basic hardware capability check
* we should supplement which feature/capability we must support
* here later.
*/
static int hardware_detect_support(void)
{
int ret;
/* Long Mode (x86-64, 64-bit support) */
if (!cpu_has_cap(X86_FEATURE_LM)) {
pr_fatal("%s, LM not supported\n", __func__);
return -ENODEV;
}
if ((boot_cpu_data.x86_phys_bits == 0) ||
(boot_cpu_data.x86_virt_bits == 0)) {
pr_fatal("%s, can't detect Linear/Physical Address size\n",
__func__);
return -ENODEV;
}
/* lapic TSC deadline timer */
if (!cpu_has_cap(X86_FEATURE_TSC_DEADLINE)) {
pr_fatal("%s, TSC deadline not supported\n", __func__);
return -ENODEV;
}
/* Execute Disable */
if (!cpu_has_cap(X86_FEATURE_NX)) {
pr_fatal("%s, NX not supported\n", __func__);
return -ENODEV;
}
/* Supervisor-Mode Execution Prevention */
if (!cpu_has_cap(X86_FEATURE_SMEP)) {
pr_fatal("%s, SMEP not supported\n", __func__);
return -ENODEV;
}
/* Supervisor-Mode Access Prevention */
if (!cpu_has_cap(X86_FEATURE_SMAP)) {
pr_fatal("%s, SMAP not supported\n", __func__);
return -ENODEV;
}
if (!cpu_has_cap(X86_FEATURE_VMX)) {
pr_fatal("%s, vmx not supported\n", __func__);
return -ENODEV;
}
if (!cpu_has_vmx_unrestricted_guest_cap()) {
pr_fatal("%s, unrestricted guest not supported\n", __func__);
return -ENODEV;
}
ret = check_vmx_mmu_cap();
if (ret != 0)
return ret;
pr_acrnlog("hardware support HV");
return 0;
}
static void alloc_phy_cpu_data(int pcpu_num)
{
phy_cpu_num = pcpu_num;
per_cpu_data_base_ptr = calloc(pcpu_num, sizeof(struct per_cpu_region));
ASSERT(per_cpu_data_base_ptr != NULL, "");
}
int __attribute__((weak)) parse_madt(uint8_t *lapic_id_base)
{
static const uint32_t lapic_id[] = {0, 2, 4, 6};
uint32_t i;
for (i = 0; i < ARRAY_SIZE(lapic_id); i++)
*lapic_id_base++ = lapic_id[i];
return ARRAY_SIZE(lapic_id);
}
static int init_phy_cpu_storage(void)
{
int i, pcpu_num = 0;
int bsp_cpu_id;
uint8_t bsp_lapic_id = 0;
uint8_t *lapic_id_base;
/*
* allocate memory to save all lapic_id detected in parse_mdt.
* We allocate 4K size which could save 4K CPUs lapic_id info.
*/
lapic_id_base = alloc_page();
ASSERT(lapic_id_base != NULL, "fail to alloc page");
pcpu_num = parse_madt(lapic_id_base);
alloc_phy_cpu_data(pcpu_num);
for (i = 0; i < pcpu_num; i++)
per_cpu(lapic_id, i) = *lapic_id_base++;
/* free memory after lapic_id are saved in per_cpu data */
free(lapic_id_base);
bsp_lapic_id = get_cur_lapic_id();
bsp_cpu_id = cpu_find_logical_id(bsp_lapic_id);
ASSERT(bsp_cpu_id >= 0, "fail to get phy cpu id");
return bsp_cpu_id;
}
static void cpu_set_current_state(uint32_t logical_id, int state)
{
spinlock_obtain(&up_count_spinlock);
/* Check if state is initializing */
if (state == CPU_STATE_INITIALIZING) {
/* Increment CPU up count */
up_count++;
/* Save this CPU's logical ID to the TSC AUX MSR */
cpu_set_logical_id(logical_id);
}
/* If cpu is dead, decrement CPU up count */
if (state == CPU_STATE_DEAD)
up_count--;
/* Set state for the specified CPU */
per_cpu(state, logical_id) = state;
spinlock_release(&up_count_spinlock);
}
#ifdef STACK_PROTECTOR
static uint64_t get_random_value(void)
{
uint64_t random = 0;
asm volatile ("1: rdrand %%rax\n"
"jnc 1b\n"
"mov %%rax, %0\n"
: "=r"(random)
:
:"%rax");
return random;
}
static void set_fs_base(void)
{
struct stack_canary *psc = &get_cpu_var(stack_canary);
psc->canary = get_random_value();
msr_write(MSR_IA32_FS_BASE, (uint64_t)psc);
}
#endif
static void get_cpu_name(void)
{
cpuid(CPUID_EXTEND_FUNCTION_2,
(uint32_t *)(boot_cpu_data.model_name),
(uint32_t *)(boot_cpu_data.model_name + 4),
(uint32_t *)(boot_cpu_data.model_name + 8),
(uint32_t *)(boot_cpu_data.model_name + 12));
cpuid(CPUID_EXTEND_FUNCTION_3,
(uint32_t *)(boot_cpu_data.model_name + 16),
(uint32_t *)(boot_cpu_data.model_name + 20),
(uint32_t *)(boot_cpu_data.model_name + 24),
(uint32_t *)(boot_cpu_data.model_name + 28));
cpuid(CPUID_EXTEND_FUNCTION_4,
(uint32_t *)(boot_cpu_data.model_name + 32),
(uint32_t *)(boot_cpu_data.model_name + 36),
(uint32_t *)(boot_cpu_data.model_name + 40),
(uint32_t *)(boot_cpu_data.model_name + 44));
boot_cpu_data.model_name[48] = '\0';
}
void bsp_boot_init(void)
{
int ret;
uint64_t start_tsc = rdtsc();
/* Clear BSS */
memset(_ld_bss_start, 0, _ld_bss_end - _ld_bss_start);
/* Build time sanity checks to make sure hard-coded offset
* is matching the actual offset!
*/
ASSERT(sizeof(struct trusty_startup_param)
+ sizeof(struct key_info) < 0x1000,
"trusty_startup_param + key_info > 1Page size(4KB)!");
ASSERT(NR_WORLD == 2, "Only 2 Worlds supported!");
ASSERT(offsetof(struct cpu_regs, rax) ==
VMX_MACHINE_T_GUEST_RAX_OFFSET,
"cpu_regs rax offset not match");
ASSERT(offsetof(struct cpu_regs, rbx) ==
VMX_MACHINE_T_GUEST_RBX_OFFSET,
"cpu_regs rbx offset not match");
ASSERT(offsetof(struct cpu_regs, rcx) ==
VMX_MACHINE_T_GUEST_RCX_OFFSET,
"cpu_regs rcx offset not match");
ASSERT(offsetof(struct cpu_regs, rdx) ==
VMX_MACHINE_T_GUEST_RDX_OFFSET,
"cpu_regs rdx offset not match");
ASSERT(offsetof(struct cpu_regs, rbp) ==
VMX_MACHINE_T_GUEST_RBP_OFFSET,
"cpu_regs rbp offset not match");
ASSERT(offsetof(struct cpu_regs, rsi) ==
VMX_MACHINE_T_GUEST_RSI_OFFSET,
"cpu_regs rsi offset not match");
ASSERT(offsetof(struct cpu_regs, rdi) ==
VMX_MACHINE_T_GUEST_RDI_OFFSET,
"cpu_regs rdi offset not match");
ASSERT(offsetof(struct cpu_regs, r8) ==
VMX_MACHINE_T_GUEST_R8_OFFSET,
"cpu_regs r8 offset not match");
ASSERT(offsetof(struct cpu_regs, r9) ==
VMX_MACHINE_T_GUEST_R9_OFFSET,
"cpu_regs r9 offset not match");
ASSERT(offsetof(struct cpu_regs, r10) ==
VMX_MACHINE_T_GUEST_R10_OFFSET,
"cpu_regs r10 offset not match");
ASSERT(offsetof(struct cpu_regs, r11) ==
VMX_MACHINE_T_GUEST_R11_OFFSET,
"cpu_regs r11 offset not match");
ASSERT(offsetof(struct cpu_regs, r12) ==
VMX_MACHINE_T_GUEST_R12_OFFSET,
"cpu_regs r12 offset not match");
ASSERT(offsetof(struct cpu_regs, r13) ==
VMX_MACHINE_T_GUEST_R13_OFFSET,
"cpu_regs r13 offset not match");
ASSERT(offsetof(struct cpu_regs, r14) ==
VMX_MACHINE_T_GUEST_R14_OFFSET,
"cpu_regs r14 offset not match");
ASSERT(offsetof(struct cpu_regs, r15) ==
VMX_MACHINE_T_GUEST_R15_OFFSET,
"cpu_regs r15 offset not match");
ASSERT(offsetof(struct run_context, cr2) ==
VMX_MACHINE_T_GUEST_CR2_OFFSET,
"run_context cr2 offset not match");
ASSERT(offsetof(struct run_context, ia32_spec_ctrl) ==
VMX_MACHINE_T_GUEST_SPEC_CTRL_OFFSET,
"run_context ia32_spec_ctrl offset not match");
__bitmap_set(CPU_BOOT_ID, &pcpu_active_bitmap);
/* Get CPU capabilities thru CPUID, including the physical address bit
* limit which is required for initializing paging.
*/
get_cpu_capabilities();
get_cpu_name();
load_cpu_state_data();
/* Initialize the hypervisor paging */
init_paging();
early_init_lapic();
init_phy_cpu_storage();
load_gdtr_and_tr();
/* Switch to run-time stack */
CPU_SP_WRITE(&get_cpu_var(stack)[CONFIG_STACK_SIZE - 1]);
#ifdef STACK_PROTECTOR
set_fs_base();
#endif
vapic_cap_detect();
cpu_xsave_init();
/* Set state for this CPU to initializing */
cpu_set_current_state(CPU_BOOT_ID, CPU_STATE_INITIALIZING);
/* Perform any necessary BSP initialization */
init_bsp();
/* Initialize Serial */
serial_init();
/* Initialize console */
console_init();
/* Print Hypervisor Banner */
print_hv_banner();
/* Make sure rdtsc is enabled */
check_tsc();
/* Calibrate TSC Frequency */
calibrate_tsc();
/* Enable logging */
init_logmsg(CONFIG_LOG_BUF_SIZE,
CONFIG_LOG_DESTINATION);
if (HV_RC_VERSION != 0)
pr_acrnlog("HV version %d.%d-rc%d-%s-%s %s build by %s, start time %lluus",
HV_MAJOR_VERSION, HV_MINOR_VERSION, HV_RC_VERSION,
HV_BUILD_TIME, HV_BUILD_VERSION, HV_BUILD_TYPE,
HV_BUILD_USER, TICKS_TO_US(start_tsc));
else
pr_acrnlog("HV version %d.%d-%s-%s %s build by %s, start time %lluus",
HV_MAJOR_VERSION, HV_MINOR_VERSION,
HV_BUILD_TIME, HV_BUILD_VERSION, HV_BUILD_TYPE,
HV_BUILD_USER, TICKS_TO_US(start_tsc));
pr_acrnlog("API version %d.%d",
HV_API_MAJOR_VERSION, HV_API_MINOR_VERSION);
pr_acrnlog("Detect processor: %s", boot_cpu_data.model_name);
pr_dbg("Core %d is up", CPU_BOOT_ID);
if (hardware_detect_support() != 0) {
pr_fatal("hardware not support!\n");
return;
}
/* Warn for security feature not ready */
if (!cpu_has_cap(X86_FEATURE_IBRS_IBPB) &&
!cpu_has_cap(X86_FEATURE_STIBP)) {
pr_fatal("SECURITY WARNING!!!!!!");
pr_fatal("Please apply the latest CPU uCode patch!");
}
enable_smep();
/* Initialize the shell */
shell_init();
/* Initialize interrupts */
interrupt_init(CPU_BOOT_ID);
timer_init();
setup_notification();
ptdev_init();
init_scheduler();
/* Start all secondary cores */
start_cpus();
/* Trigger event to allow secondary CPUs to continue */
__bitmap_set(0, &pcpu_sync);
ASSERT(get_cpu_id() == CPU_BOOT_ID, "");
if (init_iommu() != 0) {
pr_fatal("%s, init iommu failed\n", __func__);
return;
}
console_setup_timer();
/* Start initializing the VM for this CPU */
ret = hv_main(CPU_BOOT_ID);
if (ret != 0)
panic("failed to start VM for bsp\n");
/* Control should not come here */
cpu_dead(CPU_BOOT_ID);
}
void cpu_secondary_init(void)
{
int ret;
/* NOTE: Use of local / stack variables in this function is problematic
* since the stack is switched in the middle of the function. For this
* reason, the logical id is only temporarily stored in a static
* variable, but this will be over-written once subsequent CPUs
* start-up. Once the spin-lock is released, the cpu_logical_id_get()
* API is used to obtain the logical ID
*/
/* Switch this CPU to use the same page tables set-up by the
* primary/boot CPU
*/
enable_paging(get_paging_pml4());
enable_smep();
early_init_lapic();
/* Find the logical ID of this CPU given the LAPIC ID
* and Set state for this CPU to initializing
*/
cpu_set_current_state(cpu_find_logical_id
(get_cur_lapic_id()),
CPU_STATE_INITIALIZING);
__bitmap_set(get_cpu_id(), &pcpu_active_bitmap);
/* Switch to run-time stack */
CPU_SP_WRITE(&get_cpu_var(stack)[CONFIG_STACK_SIZE - 1]);
#ifdef STACK_PROTECTOR
set_fs_base();
#endif
load_gdtr_and_tr();
/* Make sure rdtsc is enabled */
check_tsc();
pr_dbg("Core %d is up", get_cpu_id());
cpu_xsave_init();
/* Release secondary boot spin-lock to allow one of the next CPU(s) to
* perform this common initialization
*/
spinlock_release(&trampoline_spinlock);
/* Initialize secondary processor interrupts. */
interrupt_init(get_cpu_id());
timer_init();
/* Wait for boot processor to signal all secondary cores to continue */
pcpu_sync_sleep(&pcpu_sync, 0);
ret = hv_main(get_cpu_id());
if (ret != 0)
panic("hv_main ret = %d\n", ret);
/* Control will only come here for secondary CPUs not configured for
* use or if an error occurs in hv_main
*/
cpu_dead(get_cpu_id());
}
int cpu_find_logical_id(uint32_t lapic_id)
{
int i;
for (i = 0; i < phy_cpu_num; i++) {
if (per_cpu(lapic_id, i) == lapic_id)
return i;
}
return -1;
}
static void update_trampoline_code_refs(uint64_t dest_pa)
{
void *ptr;
uint64_t val;
int i;
/*
* calculate the fixup CS:IP according to fixup target address
* dynamically.
*
* trampoline code starts in real mode,
* so the target addres is HPA
*/
val = dest_pa + (uint64_t)trampoline_fixup_target;
ptr = HPA2HVA(dest_pa + (uint64_t)trampoline_fixup_cs);
*(uint16_t *)(ptr) = (uint16_t)(val >> 4) & 0xFFFFU;
ptr = HPA2HVA(dest_pa + (uint64_t)trampoline_fixup_ip);
*(uint16_t *)(ptr) = (uint16_t)(val & 0xfU);
/* Update temporary page tables */
ptr = HPA2HVA(dest_pa + (uint64_t)CPU_Boot_Page_Tables_ptr);
*(uint32_t *)(ptr) += dest_pa;
ptr = HPA2HVA(dest_pa + (uint64_t)CPU_Boot_Page_Tables_Start);
*(uint64_t *)(ptr) += dest_pa;
ptr = HPA2HVA(dest_pa + (uint64_t)trampoline_pdpt_addr);
for (i = 0; i < 4; i++)
*(uint64_t *)(ptr + sizeof(uint64_t) * i) += dest_pa;
/* update the gdt base pointer with relocated offset */
ptr = HPA2HVA(dest_pa + (uint64_t)trampoline_gdt_ptr);
*(uint64_t *)(ptr + 2) += dest_pa;
/* update trampoline jump pointer with relocated offset */
ptr = HPA2HVA(dest_pa + (uint64_t)trampoline_start64_fixup);
*(uint32_t *)ptr += dest_pa;
}
static uint64_t prepare_trampoline(void)
{
uint64_t size, dest_pa;
size = (uint64_t)_ld_trampoline_end - (uint64_t)trampoline_start16;
#ifndef CONFIG_EFI_STUB
dest_pa = e820_alloc_low_memory(CONFIG_LOW_RAM_SIZE);
#else
dest_pa = (uint64_t)get_ap_trampoline_buf();
#endif
pr_dbg("trampoline code: %llx size %x", dest_pa, size);
/* Copy segment for AP initialization code below 1MB */
memcpy_s(HPA2HVA(dest_pa), size, _ld_trampoline_load, size);
update_trampoline_code_refs(dest_pa);
trampoline_start16_paddr = dest_pa;
return dest_pa;
}
/*
* Start all secondary CPUs.
*/
void start_cpus()
{
uint32_t timeout;
uint32_t expected_up;
uint64_t startup_paddr;
startup_paddr = prepare_trampoline();
/* Set flag showing number of CPUs expected to be up to all
* cpus
*/
expected_up = phy_cpu_num;
/* Broadcast IPIs to all other CPUs */
send_startup_ipi(INTR_CPU_STARTUP_ALL_EX_SELF,
-1U, startup_paddr);
/* Wait until global count is equal to expected CPU up count or
* configured time-out has expired
*/
timeout = CONFIG_CPU_UP_TIMEOUT * 1000;
while ((up_count != expected_up) && (timeout != 0)) {
/* Delay 10us */
udelay(10);
/* Decrement timeout value */
timeout -= 10;
}
/* Check to see if all expected CPUs are actually up */
if (up_count != expected_up) {
/* Print error */
pr_fatal("Secondary CPUs failed to come up");
/* Error condition - loop endlessly for now */
do {
} while (1);
}
}
void stop_cpus()
{
int i;
uint32_t timeout, expected_up;
timeout = CONFIG_CPU_UP_TIMEOUT * 1000;
for (i = 0; i < phy_cpu_num; i++) {
if (get_cpu_id() == i) /* avoid offline itself */
continue;
make_pcpu_offline(i);
}
expected_up = 1;
while ((up_count != expected_up) && (timeout !=0)) {
/* Delay 10us */
udelay(10);
/* Decrement timeout value */
timeout -= 10;
}
if (up_count != expected_up) {
pr_fatal("Can't make all APs offline");
/* if partial APs is down, it's not easy to recover
* per our current implementation (need make up dead
* APs one by one), just print error mesage and dead
* loop here.
*
* FIXME:
* We need to refine here to handle the AP offline
* failure for release/debug version. Ideally, we should
* define how to handle general unrecoverable error and
* follow it here.
*/
do {
} while (1);
}
}
void cpu_dead(uint32_t logical_id)
{
/* For debug purposes, using a stack variable in the while loop enables
* us to modify the value using a JTAG probe and resume if needed.
*/
int halt = 1;
if (bitmap_test_and_clear(logical_id, &pcpu_active_bitmap) == false) {
pr_err("pcpu%d already dead", logical_id);
return;
}
/* Set state to show CPU is dead */
cpu_set_current_state(logical_id, CPU_STATE_DEAD);
/* clean up native stuff */
timer_cleanup();
vmx_off(logical_id);
CACHE_FLUSH_INVALIDATE_ALL();
/* Halt the CPU */
do {
asm volatile ("hlt");
} while (halt != 0);
}
static void cpu_set_logical_id(uint32_t logical_id)
{
/* Write TSC AUX register */
msr_write(MSR_IA32_TSC_AUX, (uint64_t) logical_id);
}
static void print_hv_banner(void)
{
char *boot_msg = "ACRN Hypervisor\n\r";
/* Print the boot message */
printf(boot_msg);
}
static void pcpu_sync_sleep(unsigned long *sync, int mask_bit)
{
uint64_t wake_sync = (1UL << mask_bit);
if (get_monitor_cap()) {
/* Wait for the event to be set using monitor/mwait */
asm volatile ("1: cmpq %%rbx,(%%rax)\n"
" je 2f\n"
" monitor\n"
" mwait\n"
" jmp 1b\n"
"2:\n"
:
: "a" (sync), "d"(0), "c"(0),
"b"(wake_sync)
: "cc");
} else {
/* Wait for the event to be set using pause */
asm volatile ("1: cmpq %%rbx,(%%rax)\n"
" je 2f\n"
" pause\n"
" jmp 1b\n"
"2:\n"
:
: "a" (sync), "d"(0), "c"(0),
"b"(wake_sync)
: "cc");
}
}
/*check allowed ONEs setting in vmx control*/
static bool is_ctrl_setting_allowed(uint64_t msr_val, uint32_t ctrl)
{
/*
* Intel SDM Appendix A.3
* - bitX in ctrl can be set 1
* only if bit 32+X in msr_val is 1
*/
return ((((uint32_t)(msr_val >> 32)) & ctrl) == ctrl);
}
static void vapic_cap_detect(void)
{
uint8_t features;
uint64_t msr_val;
features = 0;
msr_val = msr_read(MSR_IA32_VMX_PROCBASED_CTLS);
if (!is_ctrl_setting_allowed(msr_val, VMX_PROCBASED_CTLS_TPR_SHADOW)) {
cpu_caps.vapic_features = 0;
return;
}
features |= VAPIC_FEATURE_TPR_SHADOW;
msr_val = msr_read(MSR_IA32_VMX_PROCBASED_CTLS2);
if (!is_ctrl_setting_allowed(msr_val, VMX_PROCBASED_CTLS2_VAPIC)) {
cpu_caps.vapic_features = features;
return;
}
features |= VAPIC_FEATURE_VIRT_ACCESS;
if (is_ctrl_setting_allowed(msr_val, VMX_PROCBASED_CTLS2_VAPIC_REGS))
features |= VAPIC_FEATURE_VIRT_REG;
if (is_ctrl_setting_allowed(msr_val, VMX_PROCBASED_CTLS2_VX2APIC))
features |= VAPIC_FEATURE_VX2APIC_MODE;
if (is_ctrl_setting_allowed(msr_val, VMX_PROCBASED_CTLS2_VIRQ)) {
features |= VAPIC_FEATURE_INTR_DELIVERY;
msr_val = msr_read(MSR_IA32_VMX_PINBASED_CTLS);
if (is_ctrl_setting_allowed(msr_val,
VMX_PINBASED_CTLS_POST_IRQ))
features |= VAPIC_FEATURE_POST_INTR;
}
cpu_caps.vapic_features = features;
}
bool is_vapic_supported(void)
{
return ((cpu_caps.vapic_features & VAPIC_FEATURE_VIRT_ACCESS) != 0);
}
bool is_vapic_intr_delivery_supported(void)
{
return ((cpu_caps.vapic_features & VAPIC_FEATURE_INTR_DELIVERY) != 0);
}
bool is_vapic_virt_reg_supported(void)
{
return ((cpu_caps.vapic_features & VAPIC_FEATURE_VIRT_REG) != 0);
}
static void cpu_xsave_init(void)
{
uint64_t val64;
if (cpu_has_cap(X86_FEATURE_XSAVE)) {
CPU_CR_READ(cr4, &val64);
val64 |= CR4_OSXSAVE;
CPU_CR_WRITE(cr4, val64);
if (get_cpu_id() == CPU_BOOT_ID) {
uint32_t ecx, unused;
cpuid(CPUID_FEATURES, &unused, &unused, &ecx, &unused);
/* if set, update it */
if ((ecx & CPUID_ECX_OSXSAVE) != 0U)
boot_cpu_data.cpuid_leaves[FEAT_1_ECX] |=
CPUID_ECX_OSXSAVE;
}
}
}