acrn-hypervisor/devicemodel/core/monitor.c

523 lines
12 KiB
C

/*
* Project Acrn
* Acrn-dm-monitor
*
* Copyright (C) 2018 Intel Corporation. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*
*
* Author: TaoYuhong <yuhong.tao@intel.com>
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/stat.h>
#include <sys/queue.h>
#include <unistd.h>
#include <pthread.h>
#include "dm.h"
#include "dm_string.h"
#include "monitor.h"
#include "acrn_mngr.h"
#include "pm.h"
#include "vmmapi.h"
#include "log.h"
#define INTR_STORM_MONITOR_PERIOD 10 /* 10 seconds */
#define INTR_STORM_THRESHOLD 100000 /* 10K times per second */
#define DELAY_INTR_TIME 1 /* 1ms */
#define DELAY_DURATION 100000 /* 100ms of total duration for delay intr */
#define TIME_TO_CHECK_AGAIN 2 /* 2seconds */
struct intr_monitor_setting_t {
bool enable;
uint32_t threshold; /* intr count in probe_period when intr storm happens */
uint32_t probe_period; /* seconds: the period to probe intr data */
uint32_t delay_time; /* ms: the time to delay each intr injection */
uint32_t delay_duration; /* us: the delay duration, after it, intr injection restore to normal */
};
union intr_monitor_t {
struct acrn_intr_monitor monitor;
char reserved[4096];
} __aligned(4096);
static union intr_monitor_t intr_data;
static uint64_t intr_cnt_buf[MAX_PTDEV_NUM * 2];
static pthread_t intr_storm_monitor_pid;
static struct intr_monitor_setting_t intr_monitor_setting = {
.enable = false,
};
/* switch macro, just open in debug */
/* #define INTR_MONITOR_DBG */
#ifdef INTR_MONITOR_DBG
static FILE * dbg_file;
#define DPRINTF(format, args...) \
do { fprintf(dbg_file, format, args); fflush(dbg_file); } while (0)
/* this is a debug function */
static void write_intr_data_to_file(const struct acrn_intr_monitor *hdr)
{
static int wr_cnt;
int j;
wr_cnt++;
fprintf(dbg_file, "\n==%d time devs=%d==\n", wr_cnt, hdr->buf_cnt / 2);
fprintf(dbg_file, "IRQ\t\tCount\n");
for (j = 0; j < hdr->buf_cnt; j += 2) {
if (hdr->buffer[j + 1] != 0) {
fprintf(dbg_file, "%ld\t\t%ld\n", hdr->buffer[j], hdr->buffer[j + 1]);
}
}
fflush(dbg_file);
}
#else
#define DPRINTF(format, arg...)
#endif
static void *intr_storm_monitor_thread(void *arg)
{
struct vmctx *ctx = (struct vmctx *)arg;
struct acrn_intr_monitor *hdr = &intr_data.monitor;
uint64_t delta = 0UL;
int ret, i;
#ifdef INTR_MONITOR_DBG
dbg_file = fopen("/tmp/intr_log", "w+");
#endif
sleep(intr_monitor_setting.probe_period);
/* first to get interrupt data */
hdr->cmd = INTR_CMD_GET_DATA;
hdr->buf_cnt = MAX_PTDEV_NUM * 2;
memset(hdr->buffer, 0, sizeof(uint64_t) * hdr->buf_cnt);
ret = vm_intr_monitor(ctx, hdr);
if (ret) {
DPRINTF("first get intr data failed, ret: %d\n", ret);
intr_storm_monitor_pid = 0;
return NULL;
}
while (1) {
#ifdef INTR_MONITOR_DBG
write_intr_data_to_file(hdr);
#endif
memcpy(intr_cnt_buf, hdr->buffer, sizeof(uint64_t) * hdr->buf_cnt);
sleep(intr_monitor_setting.probe_period);
/* next time to get interrupt data */
memset(hdr->buffer, 0, sizeof(uint64_t) * hdr->buf_cnt);
ret = vm_intr_monitor(ctx, hdr);
if (ret) {
pr_err("next get intr data failed, ret: %d\n", ret);
intr_storm_monitor_pid = 0;
break;
}
/*
* calc the delta of the two times count of interrupt;
* compare the IRQ num first, if not same just drop it,
* for it just happens rarelly when devices dynamically
* allocation in SOS or UOS, it can be calc next time
*/
for (i = 0; i < hdr->buf_cnt; i += 2) {
if (hdr->buffer[i] != intr_cnt_buf[i])
continue;
/* avoid delta overflow */
if (hdr->buffer[i + 1] < intr_cnt_buf[i + 1])
continue;
delta = hdr->buffer[i + 1] - intr_cnt_buf[i + 1];
if (delta > intr_monitor_setting.threshold) {
#ifdef INTR_MONITOR_DBG
write_intr_data_to_file(hdr);
#endif
break;
}
}
/* storm detected, handle the intr abnormal status */
if (i < hdr->buf_cnt) {
pr_notice("irq=%ld, delta=%ld\n", intr_cnt_buf[i], delta);
hdr->cmd = INTR_CMD_DELAY_INT;
hdr->buffer[0] = intr_monitor_setting.delay_time;
vm_intr_monitor(ctx, hdr);
usleep(intr_monitor_setting.delay_duration); /* sleep-delay intr */
hdr->buffer[0] = 0; /* cancel to delay intr */
vm_intr_monitor(ctx, hdr);
sleep(TIME_TO_CHECK_AGAIN); /* time to get data again */
hdr->cmd = INTR_CMD_GET_DATA;
hdr->buf_cnt = MAX_PTDEV_NUM * 2;
memset(hdr->buffer, 0, sizeof(uint64_t) * hdr->buf_cnt);
vm_intr_monitor(ctx, hdr);
}
}
return NULL;
}
static void start_intr_storm_monitor(struct vmctx *ctx)
{
if (intr_monitor_setting.enable) {
int ret = pthread_create(&intr_storm_monitor_pid, NULL, intr_storm_monitor_thread, ctx);
if (ret) {
pr_err("failed %s %d\n", __func__, __LINE__);
intr_storm_monitor_pid = 0;
}
pthread_setname_np(intr_storm_monitor_pid, "storm_monitor");
pr_info("start monitor interrupt data...\n");
}
}
static void stop_intr_storm_monitor(void)
{
if (intr_storm_monitor_pid) {
void *ret;
pthread_cancel(intr_storm_monitor_pid);
pthread_join(intr_storm_monitor_pid, &ret);
intr_storm_monitor_pid = 0;
}
}
/*
.* interrupt monitor setting params, current interrupt mitigation will delay UOS's
.* pass-through devices' interrupt injection, the settings input from acrn-dm:
.* params:
.* threshold: each intr count/second when intr storm happens;
.* probe_period: seconds -- the period to probe intr data;
.* delay_time: ms -- the time to delay each intr injection;
* delay_duration; us -- the delay duration, after it, intr injection restore to normal
.*/
int acrn_parse_intr_monitor(const char *opt)
{
uint32_t threshold, period, delay, duration;
char *cp;
if((!dm_strtoui(opt, &cp, 10, &threshold) && *cp == ',') &&
(!dm_strtoui(cp + 1, &cp, 10, &period) && *cp == ',') &&
(!dm_strtoui(cp + 1, &cp, 10, &delay) && *cp == ',') &&
(!dm_strtoui(cp + 1, &cp, 10, &duration))) {
pr_info("interrupt storm monitor params: %d, %d, %d, %d\n", threshold, period, delay, duration);
} else {
pr_err("%s: not correct, it should be like: --intr_monitor 10000,10,1,100, please check!\n", opt);
return -1;
}
intr_monitor_setting.enable = true;
intr_monitor_setting.threshold = threshold * period;
intr_monitor_setting.probe_period = period;
intr_monitor_setting.delay_time = delay;
intr_monitor_setting.delay_duration = duration * 1000;
return 0;
}
struct vm_ops {
char name[16];
void *arg;
struct monitor_vm_ops *ops;
LIST_ENTRY(vm_ops) list;
};
static unsigned wakeup_reason = 0;
unsigned get_wakeup_reason(void)
{
return wakeup_reason;
}
int set_wakeup_timer(time_t t)
{
int acrnd_fd;
struct mngr_msg req;
struct mngr_msg ack;
int ret;
acrnd_fd = mngr_open_un("acrnd", MNGR_CLIENT);
if (acrnd_fd < 0) {
return -1;
}
req.magic = MNGR_MSG_MAGIC;
req.msgid = ACRND_TIMER;
req.timestamp = time(NULL);
req.data.rtc_timer.t = t;
strncpy(req.data.rtc_timer.vmname, vmname,
sizeof(req.data.rtc_timer.vmname));
memset(&ack, 0, sizeof(struct mngr_msg));
ret = mngr_send_msg(acrnd_fd, &req, &ack, 2);
mngr_close(acrnd_fd);
if (ret != sizeof(ack)) {
pr_err("%s %d\r\n", __func__, __LINE__);
return -1;
}
return ack.data.err;
}
static LIST_HEAD(vm_ops_list, vm_ops) vm_ops_head;
static pthread_mutex_t vm_ops_mtx = PTHREAD_MUTEX_INITIALIZER;
int monitor_register_vm_ops(struct monitor_vm_ops *mops, void *arg,
const char *name)
{
struct vm_ops *ops;
if (!mops) {
pr_err("%s %d\r\n", __func__, __LINE__);
return -1;
}
ops = calloc(1, sizeof(*ops));
if (!ops) {
pr_err("Alloc ops");
return -1;
}
if (name)
strncpy(ops->name, name, sizeof(ops->name) - 1);
ops->ops = mops;
ops->arg = arg;
pthread_mutex_lock(&vm_ops_mtx);
LIST_INSERT_HEAD(&vm_ops_head, ops, list);
pthread_mutex_unlock(&vm_ops_mtx);
return 0;
}
static int monitor_fd = -1;
/* handlers */
#define ACK_TIMEOUT 1
#define DEFINE_HANDLER(name, func) \
static void name(struct mngr_msg *msg, int client_fd, void *param) \
{ \
struct mngr_msg ack; \
struct vm_ops *ops; \
\
int ret = 0; \
int count = 0; \
\
ack.magic = MNGR_MSG_MAGIC; \
ack.msgid = msg->msgid; \
ack.timestamp = msg->timestamp; \
\
LIST_FOREACH(ops, &vm_ops_head, list) { \
if (ops->ops->func) { \
ret += ops->ops->func(ops->arg); \
count++; \
} \
} \
\
if (!count) { \
ack.data.err = -1; \
pr_err("No handler for id:%u\r\n", msg->msgid); \
} else \
ack.data.err = ret; \
\
mngr_send_msg(client_fd, &ack, NULL, ACK_TIMEOUT); \
}
DEFINE_HANDLER(handle_suspend, suspend);
DEFINE_HANDLER(handle_pause, pause);
DEFINE_HANDLER(handle_continue, unpause);
static void handle_stop(struct mngr_msg *msg, int client_fd, void *param)
{
struct mngr_msg ack;
struct vm_ops *ops;
int ret = 0;
int count = 0;
ack.magic = MNGR_MSG_MAGIC;
ack.msgid = msg->msgid;
ack.timestamp = msg->timestamp;
if (msg->data.acrnd_stop.force && !is_rtvm) {
vm_set_suspend_mode(VM_SUSPEND_POWEROFF);
ack.data.err = 0;
} else {
LIST_FOREACH(ops, &vm_ops_head, list) {
if (ops->ops->stop) {
ret += ops->ops->stop(ops->arg);
count++;
}
}
if (!count) {
ack.data.err = -1;
pr_err("No handler for id:%u\r\n", msg->msgid);
} else
ack.data.err = ret;
}
mngr_send_msg(client_fd, &ack, NULL, ACK_TIMEOUT);
}
static void handle_resume(struct mngr_msg *msg, int client_fd, void *param)
{
struct mngr_msg ack;
struct vm_ops *ops;
int ret = 0;
int count = 0;
ack.magic = MNGR_MSG_MAGIC;
ack.msgid = msg->msgid;
ack.timestamp = msg->timestamp;
wakeup_reason = msg->data.reason;
LIST_FOREACH(ops, &vm_ops_head, list) {
if (ops->ops->resume) {
ret += ops->ops->resume(ops->arg);
count++;
}
}
if (!count) {
ack.data.err = -1;
pr_err("No handler for id:%u\r\n", msg->msgid);
} else
ack.data.err = ret;
mngr_send_msg(client_fd, &ack, NULL, ACK_TIMEOUT);
}
static void handle_query(struct mngr_msg *msg, int client_fd, void *param)
{
struct mngr_msg ack;
struct vm_ops *ops;
ack.magic = MNGR_MSG_MAGIC;
ack.msgid = msg->msgid;
ack.timestamp = msg->timestamp;
ack.data.state = -1;
LIST_FOREACH(ops, &vm_ops_head, list) {
if (ops->ops->query) {
ack.data.state = ops->ops->query(ops->arg);
break;
}
}
mngr_send_msg(client_fd, &ack, NULL, ACK_TIMEOUT);
}
static void handle_blkrescan(struct mngr_msg *msg, int client_fd, void *param)
{
struct mngr_msg ack;
struct vm_ops *ops;
int ret = 0;
int count = 0;
ack.magic = MNGR_MSG_MAGIC;
ack.msgid = msg->msgid;
ack.timestamp = msg->timestamp;
wakeup_reason = msg->data.reason;
LIST_FOREACH(ops, &vm_ops_head, list) {
if (ops->ops->rescan) {
ret += ops->ops->rescan(ops->arg, msg->data.devargs);
count++;
}
}
if (!count) {
ack.data.err = -1;
fprintf(stderr, "No handler for id:%u\r\n", msg->msgid);
} else
ack.data.err = ret;
mngr_send_msg(client_fd, &ack, NULL, ACK_TIMEOUT);
}
static struct monitor_vm_ops pmc_ops = {
.stop = NULL,
.resume = vm_monitor_resume,
.suspend = NULL,
.pause = NULL,
.unpause = NULL,
.query = vm_monitor_query,
};
int monitor_init(struct vmctx *ctx)
{
int ret;
char path[128] = {};
ret = check_dir(ACRN_DM_BASE_PATH, CHK_CREAT);
if (ret) {
pr_err("%s %d\r\n", __func__, __LINE__);
goto dir_err;
}
ret = check_dir(ACRN_DM_SOCK_PATH, CHK_CREAT);
if (ret) {
pr_err("%s %d\r\n", __func__, __LINE__);
goto dir_err;
}
snprintf(path, sizeof(path) - 1, "%s.monitor", vmname);
monitor_fd = mngr_open_un(path, MNGR_SERVER);
if (monitor_fd < 0) {
pr_err("%s %d\r\n", __func__, __LINE__);
goto server_err;
}
ret = 0;
ret += mngr_add_handler(monitor_fd, DM_STOP, handle_stop, NULL);
ret += mngr_add_handler(monitor_fd, DM_SUSPEND, handle_suspend, NULL);
ret += mngr_add_handler(monitor_fd, DM_RESUME, handle_resume, NULL);
ret += mngr_add_handler(monitor_fd, DM_PAUSE, handle_pause, NULL);
ret += mngr_add_handler(monitor_fd, DM_CONTINUE, handle_continue, NULL);
ret += mngr_add_handler(monitor_fd, DM_QUERY, handle_query, NULL);
ret += mngr_add_handler(monitor_fd, DM_BLKRESCAN, handle_blkrescan, NULL);
if (ret) {
pr_err("%s %d\r\n", __func__, __LINE__);
goto handlers_err;
}
monitor_register_vm_ops(&pmc_ops, ctx, "PMC_VM_OPs");
start_intr_storm_monitor(ctx);
return 0;
handlers_err:
mngr_close(monitor_fd);
monitor_fd = -1;
server_err:
dir_err:
return -1;
}
void monitor_close(void)
{
if (monitor_fd >= 0)
mngr_close(monitor_fd);
stop_intr_storm_monitor();
}