acrn-hypervisor/hypervisor/common/hypercall.c

1336 lines
38 KiB
C

/*
* Copyright (C) 2018 Intel Corporation. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <asm/guest/vm.h>
#include <asm/vmx.h>
#include <schedule.h>
#include <version.h>
#include <reloc.h>
#include <asm/vtd.h>
#include <asm/per_cpu.h>
#include <asm/lapic.h>
#include <asm/guest/assign.h>
#include <asm/guest/ept.h>
#include <asm/mmu.h>
#include <hypercall.h>
#include <errno.h>
#include <logmsg.h>
#include <asm/ioapic.h>
#include <mmio_dev.h>
#include <ivshmem.h>
#include <vmcs9900.h>
#include <asm/rtcm.h>
#include <asm/irq.h>
#include <ticks.h>
#include <asm/cpuid.h>
#include <vroot_port.h>
#define DBG_LEVEL_HYCALL 6U
typedef int32_t (*emul_dev_create) (struct acrn_vm *vm, struct acrn_emul_dev *dev);
typedef int32_t (*emul_dev_destroy) (struct pci_vdev *vdev);
struct emul_dev_ops {
/*
* The low 32 bits represent the vendor id and device id of PCI device,
* and the high 32 bits represent the device number of the legacy device
*/
uint64_t dev_id;
/* TODO: to re-use vdev_init/vdev_deinit directly in hypercall */
emul_dev_create create;
emul_dev_destroy destroy;
};
static struct emul_dev_ops emul_dev_ops_tbl[] = {
#ifdef CONFIG_IVSHMEM_ENABLED
{(IVSHMEM_VENDOR_ID | (IVSHMEM_DEVICE_ID << 16U)), create_ivshmem_vdev , destroy_ivshmem_vdev},
#else
{(IVSHMEM_VENDOR_ID | (IVSHMEM_DEVICE_ID << 16U)), NULL, NULL},
#endif
{(MCS9900_VENDOR | (MCS9900_DEV << 16U)), create_vmcs9900_vdev, destroy_vmcs9900_vdev},
{(VRP_VENDOR | (VRP_DEVICE << 16U)), create_vrp, destroy_vrp},
};
bool is_hypercall_from_ring0(void)
{
uint16_t cs_sel;
bool ret;
cs_sel = exec_vmread16(VMX_GUEST_CS_SEL);
/* cs_selector[1:0] is CPL */
if ((cs_sel & 0x3U) == 0U) {
ret = true;
} else {
ret = false;
}
return ret;
}
inline static bool is_severity_pass(uint16_t target_vmid)
{
return SEVERITY_SOS >= get_vm_severity(target_vmid);
}
/**
* @brief offline vcpu from SOS
*
* The function offline specific vcpu from SOS.
*
* @param vcpu Pointer to vCPU that initiates the hypercall
* @param param1 lapic id of the vcpu which wants to offline
*
* @pre is_sos_vm(vcpu->vm)
* @return 0 on success, non-zero on error.
*/
int32_t hcall_sos_offline_cpu(struct acrn_vcpu *vcpu, __unused struct acrn_vm *target_vm,
uint64_t param1, __unused uint64_t param2)
{
struct acrn_vcpu *target_vcpu;
uint16_t i;
int32_t ret = 0;
uint64_t lapicid = param1;
pr_info("sos offline cpu with lapicid %ld", lapicid);
foreach_vcpu(i, vcpu->vm, target_vcpu) {
if (vlapic_get_apicid(vcpu_vlapic(target_vcpu)) == lapicid) {
/* should not offline BSP */
if (target_vcpu->vcpu_id == BSP_CPU_ID) {
ret = -1;
break;
}
zombie_vcpu(target_vcpu, VCPU_ZOMBIE);
offline_vcpu(target_vcpu);
}
}
return ret;
}
/**
* @brief Get hypervisor api version
*
* The function only return api version information when VM is SOS_VM.
*
* @param vcpu Pointer to vCPU that initiates the hypercall
* @param param1 guest physical memory address. The api version returned
* will be copied to this gpa
*
* @pre is_sos_vm(vcpu->vm)
* @return 0 on success, non-zero on error.
*/
int32_t hcall_get_api_version(struct acrn_vcpu *vcpu, __unused struct acrn_vm *target_vm,
uint64_t param1, __unused uint64_t param2)
{
struct hc_api_version version;
version.major_version = HV_API_MAJOR_VERSION;
version.minor_version = HV_API_MINOR_VERSION;
return copy_to_gpa(vcpu->vm, &version, param1, sizeof(version));
}
/*
* nearest_pow2(n) is the nearest power of 2 integer that is not less than n
* The last (most significant) bit set of (n*2-1) matches the above definition
*/
static uint32_t nearest_pow2(uint32_t n)
{
uint32_t p = n;
if (n >= 2U) {
p = fls32(2U*n - 1U);
}
return p;
}
static void get_cache_shift(uint32_t *l2_shift, uint32_t *l3_shift)
{
uint32_t subleaf;
*l2_shift = 0U;
*l3_shift = 0U;
for (subleaf = 0U;; subleaf++) {
uint32_t eax, ebx, ecx, edx;
uint32_t cache_type, cache_level, id, shift;
cpuid_subleaf(0x4U, subleaf, &eax, &ebx, &ecx, &edx);
cache_type = eax & 0x1fU;
cache_level = (eax >> 5U) & 0x7U;
id = (eax >> 14U) & 0xfffU;
shift = nearest_pow2(id + 1U);
/* No more caches */
if ((cache_type == 0U) || (cache_type >= 4U)) {
break;
}
if (cache_level == 2U) {
*l2_shift = shift;
} else if (cache_level == 3U) {
*l3_shift = shift;
}
}
}
/**
* @brief Get basic platform information.
*
* The function returns basic hardware or configuration information
* for the current platform.
*
* @param vcpu Pointer to vCPU that initiates the hypercall.
* @param param1 GPA pointer to struct hc_platform_info.
*
* @pre is_sos_vm(vcpu->vm)
* @return 0 on success, non zero in case of error.
*/
int32_t hcall_get_platform_info(struct acrn_vcpu *vcpu, __unused struct acrn_vm *target_vm,
uint64_t param1, __unused uint64_t param2)
{
struct acrn_vm *vm = vcpu->vm;
struct hc_platform_info pi = { 0 };
uint32_t entry_size = sizeof(struct acrn_vm_config);
int32_t ret;
/* to get the vm_config_info pointer */
ret = copy_from_gpa(vm, &pi, param1, sizeof(pi));
if (ret == 0) {
uint16_t i;
uint16_t pcpu_nums = get_pcpu_nums();
get_cache_shift(&pi.l2_cat_shift, &pi.l3_cat_shift);
for (i = 0U; i < min(pcpu_nums, MAX_PLATFORM_LAPIC_IDS); i++) {
pi.lapic_ids[i] = per_cpu(lapic_id, i);
}
pi.cpu_num = pcpu_nums;
pi.version = 0x100; /* version 1.0; byte[1:0] = major:minor version */
pi.max_vcpus_per_vm = MAX_VCPUS_PER_VM;
pi.max_kata_containers = CONFIG_MAX_KATA_VM_NUM;
pi.max_vms = CONFIG_MAX_VM_NUM;
pi.vm_config_entry_size = entry_size;
/* If it wants to get the vm_configs info */
if (pi.vm_configs_addr != 0UL) {
ret = copy_to_gpa(vm, (void *)get_vm_config(0U), pi.vm_configs_addr, entry_size * pi.max_vms);
}
if (ret == 0) {
ret = copy_to_gpa(vm, &pi, param1, sizeof(pi));
}
}
return ret;
}
/**
* @brief create virtual machine
*
* Create a virtual machine based on parameter, currently there is no
* limitation for calling times of this function, will add MAX_VM_NUM
* support later.
*
* @param vcpu Pointer to vCPU that initiates the hypercall
* @param target_vm Pointer to target VM data structure
* @param param1 guest physical memory address. This gpa points to
* struct acrn_create_vm
*
* @pre is_sos_vm(vcpu->vm)
* @pre get_vm_config(target_vm->vm_id) != NULL
* @return 0 on success, non-zero on error.
*/
int32_t hcall_create_vm(struct acrn_vcpu *vcpu, struct acrn_vm *target_vm, uint64_t param1, __unused uint64_t param2)
{
struct acrn_vm *vm = vcpu->vm;
uint16_t vmid = target_vm->vm_id;
int32_t ret = -1;
struct acrn_vm *tgt_vm = NULL;
struct acrn_create_vm cv;
struct acrn_vm_config* vm_config = NULL;
if (copy_from_gpa(vm, &cv, param1, sizeof(cv)) == 0) {
if (is_poweroff_vm(get_vm_from_vmid(vmid))) {
vm_config = get_vm_config(vmid);
/* Filter out the bits should not set by DM and then assign it to guest_flags */
vm_config->guest_flags |= (cv.vm_flag & DM_OWNED_GUEST_FLAG_MASK);
/* post-launched VM is allowed to choose pCPUs from vm_config->cpu_affinity only */
if ((cv.cpu_affinity & ~(vm_config->cpu_affinity)) == 0UL) {
/* By default launch VM with all the configured pCPUs */
uint64_t pcpu_bitmap = vm_config->cpu_affinity;
if (cv.cpu_affinity != 0UL) {
/* overwrite the statically configured CPU affinity */
pcpu_bitmap = cv.cpu_affinity;
}
/*
* GUEST_FLAG_RT must be set if we have GUEST_FLAG_LAPIC_PASSTHROUGH
* set in guest_flags
*/
if (((vm_config->guest_flags & GUEST_FLAG_LAPIC_PASSTHROUGH) != 0UL)
&& ((vm_config->guest_flags & GUEST_FLAG_RT) == 0UL)) {
pr_err("Wrong guest flags 0x%lx\n", vm_config->guest_flags);
} else {
if (create_vm(vmid, pcpu_bitmap, vm_config, &tgt_vm) == 0) {
/* return a relative vm_id from SOS view */
cv.vmid = vmid_2_rel_vmid(vm->vm_id, vmid);
cv.vcpu_num = tgt_vm->hw.created_vcpus;
} else {
dev_dbg(DBG_LEVEL_HYCALL, "HCALL: Create VM failed");
cv.vmid = ACRN_INVALID_VMID;
}
ret = copy_to_gpa(vm, &cv, param1, sizeof(cv));
}
} else {
pr_err("Post-launched VM%u chooses invalid pCPUs(0x%llx).",
vmid, cv.cpu_affinity);
}
}
}
return ret;
}
/**
* @brief destroy virtual machine
*
* Destroy a virtual machine, it will pause target VM then shutdown it.
* The function will return -1 if the target VM does not exist.
*
* @param target_vm Pointer to target VM data structure
*
* @return 0 on success, non-zero on error.
*/
int32_t hcall_destroy_vm(__unused struct acrn_vcpu *vcpu, struct acrn_vm *target_vm,
__unused uint64_t param1, __unused uint64_t param2)
{
int32_t ret = -1;
if (is_paused_vm(target_vm)) {
/* TODO: check target_vm guest_flags */
ret = shutdown_vm(target_vm);
}
return ret;
}
/**
* @brief start virtual machine
*
* Start a virtual machine, it will schedule target VM's vcpu to run.
* The function will return -1 if the target VM does not exist or the
* IOReq buffer page for the VM is not ready.
*
* @param target_vm Pointer to target VM data structure
*
* @return 0 on success, non-zero on error.
*/
int32_t hcall_start_vm(__unused struct acrn_vcpu *vcpu, struct acrn_vm *target_vm,
__unused uint64_t param1, __unused uint64_t param2)
{
int32_t ret = -1;
if ((is_created_vm(target_vm)) && (target_vm->sw.io_shared_page != NULL)) {
/* TODO: check target_vm guest_flags */
start_vm(target_vm);
ret = 0;
}
return ret;
}
/**
* @brief pause virtual machine
*
* Pause a virtual machine, if the VM is already paused, the function
* will return 0 directly for success.
* The function will return -1 if the target VM does not exist.
*
* @param target_vm Pointer to target VM data structure
*
* @return 0 on success, non-zero on error.
*/
int32_t hcall_pause_vm(__unused struct acrn_vcpu *vcpu, struct acrn_vm *target_vm,
__unused uint64_t param1, __unused uint64_t param2)
{
int32_t ret = -1;
if (!is_poweroff_vm(target_vm)) {
/* TODO: check target_vm guest_flags */
pause_vm(target_vm);
ret = 0;
}
return ret;
}
/**
* @brief reset virtual machine
*
* Reset a virtual machine, it will make target VM rerun from
* pre-defined entry. Comparing to start vm, this function reset
* each vcpu state and do some initialization for guest.
* The function will return -1 if the target VM does not exist.
*
* @param target_vm Pointer to target VM data structure
*
* @return 0 on success, non-zero on error.
*/
int32_t hcall_reset_vm(__unused struct acrn_vcpu *vcpu, struct acrn_vm *target_vm,
__unused uint64_t param1, __unused uint64_t param2)
{
int32_t ret = -1;
if (is_paused_vm(target_vm)) {
/* TODO: check target_vm guest_flags */
ret = reset_vm(target_vm);
}
return ret;
}
/**
* @brief set vcpu regs
*
* Set the vcpu regs. It will set the vcpu init regs from DM. Now,
* it's only applied to BSP. AP always uses fixed init regs.
* The function will return -1 if the targat VM or BSP doesn't exist.
*
* @param vcpu Pointer to vCPU that initiates the hypercall
* @param target_vm Pointer to target VM data structure
* @param param2 guest physical address. This gpa points to
* struct acrn_vcpu_regs
*
* @pre is_sos_vm(vcpu->vm)
* @return 0 on success, non-zero on error.
*/
int32_t hcall_set_vcpu_regs(struct acrn_vcpu *vcpu, struct acrn_vm *target_vm,
__unused uint64_t param1, uint64_t param2)
{
struct acrn_vm *vm = vcpu->vm;
struct acrn_set_vcpu_regs vcpu_regs;
struct acrn_vcpu *target_vcpu;
int32_t ret = -1;
/* Only allow setup init ctx while target_vm is inactive */
if ((!is_poweroff_vm(target_vm)) && (param2 != 0U) && (target_vm->state != VM_RUNNING)) {
if (copy_from_gpa(vm, &vcpu_regs, param2, sizeof(vcpu_regs)) != 0) {
} else if (vcpu_regs.vcpu_id >= MAX_VCPUS_PER_VM) {
pr_err("%s: invalid vcpu_id for set_vcpu_regs\n", __func__);
} else {
target_vcpu = vcpu_from_vid(target_vm, vcpu_regs.vcpu_id);
if (target_vcpu->state != VCPU_OFFLINE) {
if (is_valid_cr0_cr4(vcpu_regs.vcpu_regs.cr0, vcpu_regs.vcpu_regs.cr4)) {
set_vcpu_regs(target_vcpu, &(vcpu_regs.vcpu_regs));
ret = 0;
}
}
}
}
return ret;
}
int32_t hcall_create_vcpu(__unused struct acrn_vcpu *vcpu, __unused struct acrn_vm *target_vm,
__unused uint64_t param1, __unused uint64_t param2)
{
return 0;
}
/**
* @brief set or clear IRQ line
*
* Set or clear a virtual IRQ line for a VM, which could be from ISA
* or IOAPIC, normally it triggers an edge IRQ.
* The function will return -1 if the target VM does not exist.
*
* @param vcpu Pointer to vCPU that initiates the hypercall
* @param target_vm Pointer to target VM data structure
* @param param2 info for irqline
*
* @pre is_sos_vm(vcpu->vm)
* @return 0 on success, non-zero on error.
*/
int32_t hcall_set_irqline(struct acrn_vcpu *vcpu, struct acrn_vm *target_vm, __unused uint64_t param1, uint64_t param2)
{
struct acrn_vm *vm = vcpu->vm;
uint32_t irq_pic;
int32_t ret = -1;
struct acrn_irqline_ops *ops = (struct acrn_irqline_ops *)&param2;
if (is_severity_pass(target_vm->vm_id) && !is_poweroff_vm(target_vm)) {
if (ops->gsi < get_vm_gsicount(vm)) {
if (ops->gsi < vpic_pincount()) {
/*
* IRQ line for 8254 timer is connected to
* I/O APIC pin #2 but PIC pin #0,route GSI
* number #2 to PIC IRQ #0.
*/
irq_pic = (ops->gsi == 2U) ? 0U : ops->gsi;
vpic_set_irqline(vm_pic(target_vm), irq_pic, ops->op);
}
/* handle IOAPIC irqline */
vioapic_set_irqline_lock(target_vm, ops->gsi, ops->op);
ret = 0;
}
}
return ret;
}
/**
* @brief inject MSI interrupt
*
* Inject a MSI interrupt for a VM.
* The function will return -1 if the target VM does not exist.
*
* @param vcpu Pointer to vCPU that initiates the hypercall
* @param target_vm Pointer to target VM data structure
* @param param2 guest physical address. This gpa points to struct acrn_msi_entry
*
* @pre is_sos_vm(vcpu->vm)
* @return 0 on success, non-zero on error.
*/
int32_t hcall_inject_msi(struct acrn_vcpu *vcpu, struct acrn_vm *target_vm, __unused uint64_t param1, uint64_t param2)
{
struct acrn_vm *vm = vcpu->vm;
int32_t ret = -1;
if (is_severity_pass(target_vm->vm_id) && !is_poweroff_vm(target_vm)) {
struct acrn_msi_entry msi;
if (copy_from_gpa(vm, &msi, param2, sizeof(msi)) == 0) {
ret = vlapic_inject_msi(target_vm, msi.msi_addr, msi.msi_data);
}
}
return ret;
}
/**
* @brief set ioreq shared buffer
*
* Set the ioreq share buffer for a VM.
* The function will return -1 if the target VM does not exist.
*
* @param vcpu Pointer to vCPU that initiates the hypercall
* @param target_vm Pointer to target VM data structure
* @param param2 guest physical address. This gpa points to
* struct acrn_set_ioreq_buffer
*
* @pre is_sos_vm(vcpu->vm)
* @return 0 on success, non-zero on error.
*/
int32_t hcall_set_ioreq_buffer(struct acrn_vcpu *vcpu, struct acrn_vm *target_vm,
__unused uint64_t param1, uint64_t param2)
{
struct acrn_vm *vm = vcpu->vm;
uint64_t hpa;
uint16_t i;
int32_t ret = -1;
if (is_created_vm(target_vm)) {
struct acrn_set_ioreq_buffer iobuf;
if (copy_from_gpa(vm, &iobuf, param2, sizeof(iobuf)) == 0) {
dev_dbg(DBG_LEVEL_HYCALL, "[%d] SET BUFFER=0x%p",
target_vm->vm_id, iobuf.req_buf);
hpa = gpa2hpa(vm, iobuf.req_buf);
if (hpa == INVALID_HPA) {
pr_err("%s,vm[%hu] gpa 0x%lx,GPA is unmapping.",
__func__, vm->vm_id, iobuf.req_buf);
target_vm->sw.io_shared_page = NULL;
} else {
target_vm->sw.io_shared_page = hpa2hva(hpa);
for (i = 0U; i < VHM_REQUEST_MAX; i++) {
set_vhm_req_state(target_vm, i, REQ_STATE_FREE);
}
ret = 0;
}
}
}
return ret;
}
/**
* @brief notify request done
*
* Notify the requestor VCPU for the completion of an ioreq.
* The function will return -1 if the target VM does not exist.
*
* @param target_vm Pointer to target VM data structure
* @param param2 vcpu ID of the requestor
*
* @return 0 on success, non-zero on error.
*/
int32_t hcall_notify_ioreq_finish(__unused struct acrn_vcpu *vcpu, struct acrn_vm *target_vm,
__unused uint64_t param1, uint64_t param2)
{
struct acrn_vcpu *target_vcpu;
int32_t ret = -1;
uint16_t vcpu_id = (uint16_t)param2;
/* make sure we have set req_buf */
if (is_severity_pass(target_vm->vm_id) &&
(!is_poweroff_vm(target_vm)) && (target_vm->sw.io_shared_page != NULL)) {
dev_dbg(DBG_LEVEL_HYCALL, "[%d] NOTIFY_FINISH for vcpu %d",
target_vm->vm_id, vcpu_id);
if (vcpu_id >= target_vm->hw.created_vcpus) {
pr_err("%s, failed to get VCPU %d context from VM %d\n",
__func__, vcpu_id, target_vm->vm_id);
} else {
target_vcpu = vcpu_from_vid(target_vm, vcpu_id);
if (!target_vcpu->vm->sw.is_polling_ioreq) {
signal_event(&target_vcpu->events[VCPU_EVENT_IOREQ]);
}
ret = 0;
}
}
return ret;
}
/**
*@pre is_sos_vm(vm)
*@pre gpa2hpa(vm, region->sos_vm_gpa) != INVALID_HPA
*/
static void add_vm_memory_region(struct acrn_vm *vm, struct acrn_vm *target_vm,
const struct vm_memory_region *region,uint64_t *pml4_page)
{
uint64_t prot = 0UL, base_paddr;
uint64_t hpa = gpa2hpa(vm, region->sos_vm_gpa);
/* access right */
if ((region->prot & MEM_ACCESS_READ) != 0U) {
prot |= EPT_RD;
}
if ((region->prot & MEM_ACCESS_WRITE) != 0U) {
prot |= EPT_WR;
}
if ((region->prot & MEM_ACCESS_EXEC) != 0U) {
prot |= EPT_EXE;
}
/* memory type */
if ((region->prot & MEM_TYPE_WB) != 0U) {
prot |= EPT_WB;
} else if ((region->prot & MEM_TYPE_WT) != 0U) {
prot |= EPT_WT;
} else if ((region->prot & MEM_TYPE_WC) != 0U) {
prot |= EPT_WC;
} else if ((region->prot & MEM_TYPE_WP) != 0U) {
prot |= EPT_WP;
} else {
prot |= EPT_UNCACHED;
}
/* If Software SRAM is initialized, and HV received a request to map Software SRAM
* area to guest, we should add EPT_WB flag to make Software SRAM effective.
* TODO: We can enforce WB for any region has overlap with Software SRAM, for simplicity,
* and leave it to SOS to make sure it won't violate.
*/
if (is_software_sram_enabled()) {
base_paddr = get_software_sram_base();
if ((hpa >= base_paddr) &&
((hpa + region->size) <= (base_paddr + get_software_sram_size()))) {
prot |= EPT_WB;
}
}
/* create gpa to hpa EPT mapping */
ept_add_mr(target_vm, pml4_page, hpa, region->gpa, region->size, prot);
}
/**
*@pre is_sos_vm(vm)
*/
static int32_t set_vm_memory_region(struct acrn_vm *vm,
struct acrn_vm *target_vm, const struct vm_memory_region *region)
{
uint64_t *pml4_page;
int32_t ret = -EINVAL;
if ((region->size & (PAGE_SIZE - 1UL)) == 0UL) {
pml4_page = (uint64_t *)target_vm->arch_vm.nworld_eptp;
if (region->type == MR_ADD) {
/* if the GPA range is SOS valid GPA or not */
if (ept_is_valid_mr(vm, region->sos_vm_gpa, region->size)) {
/* FIXME: how to filter the alias mapping ? */
add_vm_memory_region(vm, target_vm, region, pml4_page);
ret = 0;
}
} else {
if (ept_is_valid_mr(target_vm, region->gpa, region->size)) {
ept_del_mr(target_vm, pml4_page, region->gpa, region->size);
ret = 0;
}
}
}
dev_dbg((ret == 0) ? DBG_LEVEL_HYCALL : LOG_ERROR,
"[vm%d] type=%d gpa=0x%x sos_gpa=0x%x sz=0x%x",
target_vm->vm_id, region->type, region->gpa,
region->sos_vm_gpa, region->size);
return ret;
}
/**
* @brief setup ept memory mapping for multi regions
*
* @param vcpu Pointer to vCPU that initiates the hypercall
* @param target_vm Pointer to target VM data structure
* @param param1 guest physical address. This gpa points to
* struct set_memmaps
*
* @pre is_sos_vm(vcpu->vm)
* @return 0 on success, non-zero on error.
*/
int32_t hcall_set_vm_memory_regions(struct acrn_vcpu *vcpu, struct acrn_vm *target_vm,
uint64_t param1, __unused uint64_t param2)
{
struct acrn_vm *vm = vcpu->vm;
struct set_regions regions;
struct vm_memory_region mr;
uint32_t idx;
int32_t ret = -1;
if (copy_from_gpa(vm, &regions, param1, sizeof(regions)) == 0) {
if (!is_poweroff_vm(target_vm) &&
(is_severity_pass(target_vm->vm_id) || (target_vm->state != VM_RUNNING))) {
idx = 0U;
while (idx < regions.mr_num) {
if (copy_from_gpa(vm, &mr, regions.regions_gpa + idx * sizeof(mr), sizeof(mr)) != 0) {
pr_err("%s: Copy mr entry fail from vm\n", __func__);
break;
}
ret = set_vm_memory_region(vm, target_vm, &mr);
if (ret < 0) {
break;
}
idx++;
}
} else {
pr_err("%p %s:target_vm is invalid or Targeting to service vm", target_vm, __func__);
}
}
return ret;
}
/**
*@pre is_sos_vm(vm)
*/
static int32_t write_protect_page(struct acrn_vm *vm,const struct wp_data *wp)
{
uint64_t hpa, base_paddr;
uint64_t prot_set;
uint64_t prot_clr;
int32_t ret = -EINVAL;
if (is_severity_pass(vm->vm_id)) {
if ((!mem_aligned_check(wp->gpa, PAGE_SIZE)) ||
(!ept_is_valid_mr(vm, wp->gpa, PAGE_SIZE))) {
pr_err("%s,vm[%hu] gpa 0x%lx,GPA is invalid or not page size aligned.",
__func__, vm->vm_id, wp->gpa);
} else {
hpa = gpa2hpa(vm, wp->gpa);
if (hpa == INVALID_HPA) {
pr_err("%s,vm[%hu] gpa 0x%lx,GPA is unmapping.",
__func__, vm->vm_id, wp->gpa);
} else {
dev_dbg(DBG_LEVEL_HYCALL, "[vm%d] gpa=0x%x hpa=0x%x",
vm->vm_id, wp->gpa, hpa);
base_paddr = hva2hpa((void *)(get_hv_image_base()));
if (((hpa <= base_paddr) && ((hpa + PAGE_SIZE) > base_paddr)) ||
((hpa >= base_paddr) &&
(hpa < (base_paddr + CONFIG_HV_RAM_SIZE)))) {
pr_err("%s: overlap the HV memory region.", __func__);
} else {
prot_set = (wp->set != 0U) ? 0UL : EPT_WR;
prot_clr = (wp->set != 0U) ? EPT_WR : 0UL;
ept_modify_mr(vm, (uint64_t *)vm->arch_vm.nworld_eptp,
wp->gpa, PAGE_SIZE, prot_set, prot_clr);
ret = 0;
}
}
}
}
return ret;
}
/**
* @brief change guest memory page write permission
*
* @param vcpu Pointer to vCPU that initiates the hypercall
* @param target_vm Pointer to target VM data structure
* @param param2 guest physical address. This gpa points to
* struct wp_data
*
* @pre is_sos_vm(vcpu->vm)
* @return 0 on success, non-zero on error.
*/
int32_t hcall_write_protect_page(struct acrn_vcpu *vcpu, struct acrn_vm *target_vm,
__unused uint64_t param1, uint64_t param2)
{
struct acrn_vm *vm = vcpu->vm;
int32_t ret = -1;
uint64_t wp_gpa = param2;
if (!is_poweroff_vm(target_vm)) {
struct wp_data wp;
if (copy_from_gpa(vm, &wp, wp_gpa, sizeof(wp)) == 0) {
ret = write_protect_page(target_vm, &wp);
}
} else {
pr_err("%p %s: target_vm is invalid", target_vm, __func__);
}
return ret;
}
/**
* @brief translate guest physical address to host physical address
*
* Translate guest physical address to host physical address for a VM.
* The function will return -1 if the target VM does not exist.
*
* @param vcpu Pointer to vCPU that initiates the hypercall
* @param target_vm Pointer to target VM data structure
* @param param2 guest physical address. This gpa points to struct vm_gpa2hpa
*
* @pre is_sos_vm(vcpu->vm)
* @return 0 on success, non-zero on error.
*/
int32_t hcall_gpa_to_hpa(struct acrn_vcpu *vcpu, struct acrn_vm *target_vm, __unused uint64_t param1, uint64_t param2)
{
struct acrn_vm *vm = vcpu->vm;
int32_t ret = -1;
struct vm_gpa2hpa v_gpa2hpa;
(void)memset((void *)&v_gpa2hpa, 0U, sizeof(v_gpa2hpa));
if (!is_poweroff_vm(target_vm) &&
(copy_from_gpa(vm, &v_gpa2hpa, param2, sizeof(v_gpa2hpa)) == 0)) {
v_gpa2hpa.hpa = gpa2hpa(target_vm, v_gpa2hpa.gpa);
if (v_gpa2hpa.hpa == INVALID_HPA) {
pr_err("%s,vm[%hu] gpa 0x%lx,GPA is unmapping.",
__func__, target_vm->vm_id, v_gpa2hpa.gpa);
} else {
ret = copy_to_gpa(vm, &v_gpa2hpa, param2, sizeof(v_gpa2hpa));
}
} else {
pr_err("target_vm is invalid or HCALL gpa2hpa: Unable copy param from vm\n");
}
return ret;
}
/**
* @brief Assign one PCI dev to a VM.
*
* @param vcpu Pointer to vCPU that initiates the hypercall
* @param target_vm Pointer to target VM data structure
* @param param2 guest physical address. This gpa points to data structure of
* acrn_assign_pcidev including assign PCI device info
*
* @pre is_sos_vm(vcpu->vm)
* @return 0 on success, non-zero on error.
*/
int32_t hcall_assign_pcidev(struct acrn_vcpu *vcpu, struct acrn_vm *target_vm,
__unused uint64_t param1, uint64_t param2)
{
struct acrn_vm *vm = vcpu->vm;
int32_t ret = -EINVAL;
struct acrn_assign_pcidev pcidev;
/* We should only assign a device to a post-launched VM at creating time for safety, not runtime or other cases*/
if (is_created_vm(target_vm)) {
if (copy_from_gpa(vm, &pcidev, param2, sizeof(pcidev)) == 0) {
ret = vpci_assign_pcidev(target_vm, &pcidev);
}
} else {
pr_err("%s, vm[%d] is not a postlaunched VM, or not in CREATED status to be assigned with a pcidev\n", __func__, vm->vm_id);
}
return ret;
}
/**
* @brief Deassign one PCI dev from a VM.
*
* @param vcpu Pointer to vCPU that initiates the hypercall
* @param target_vm Pointer to target VM data structure
* @param param2 guest physical address. This gpa points to data structure of
* acrn_assign_pcidev including deassign PCI device info
*
* @pre is_sos_vm(vcpu->vm)
* @return 0 on success, non-zero on error.
*/
int32_t hcall_deassign_pcidev(struct acrn_vcpu *vcpu, struct acrn_vm *target_vm,
__unused uint64_t param1, uint64_t param2)
{
struct acrn_vm *vm = vcpu->vm;
int32_t ret = -EINVAL;
struct acrn_assign_pcidev pcidev;
/* We should only de-assign a device from a post-launched VM at creating/shutdown/reset time */
if ((is_paused_vm(target_vm) || is_created_vm(target_vm))) {
if (copy_from_gpa(vm, &pcidev, param2, sizeof(pcidev)) == 0) {
ret = vpci_deassign_pcidev(target_vm, &pcidev);
}
} else {
pr_err("%s, vm[%d] is not a postlaunched VM, or not in PAUSED/CREATED status to be deassigned from a pcidev\n", __func__, vm->vm_id);
}
return ret;
}
/**
* @brief Assign one MMIO dev to a VM.
*
* @param vcpu Pointer to vCPU that initiates the hypercall
* @param target_vm Pointer to target VM data structure
* @param param2 guest physical address. This gpa points to data structure of
* acrn_mmiodev including assign MMIO device info
*
* @pre is_sos_vm(vcpu->vm)
* @return 0 on success, non-zero on error.
*/
int32_t hcall_assign_mmiodev(struct acrn_vcpu *vcpu, struct acrn_vm *target_vm,
__unused uint64_t param1, uint64_t param2)
{
struct acrn_vm *vm = vcpu->vm;
int32_t ret = -EINVAL;
struct acrn_mmiodev mmiodev;
/* We should only assign a device to a post-launched VM at creating time for safety, not runtime or other cases*/
if (is_created_vm(target_vm)) {
if (copy_from_gpa(vm, &mmiodev, param2, sizeof(mmiodev)) == 0) {
if (ept_is_valid_mr(vm, mmiodev.base_hpa, mmiodev.size)) {
ret = deassign_mmio_dev(vm, &mmiodev);
if (ret == 0) {
ret = assign_mmio_dev(target_vm, &mmiodev);
}
}
}
} else {
pr_err("vm[%d] %s failed!\n",target_vm->vm_id, __func__);
}
return ret;
}
/**
* @brief Deassign one MMIO dev from a VM.
*
* @param vcpu Pointer to vCPU that initiates the hypercall
* @param target_vm Pointer to target VM data structure
* @param param2 guest physical address. This gpa points to data structure of
* acrn_mmiodev including deassign MMIO device info
*
* @pre is_sos_vm(vcpu->vm)
* @return 0 on success, non-zero on error.
*/
int32_t hcall_deassign_mmiodev(struct acrn_vcpu *vcpu, struct acrn_vm *target_vm,
__unused uint64_t param1, uint64_t param2)
{
struct acrn_vm *vm = vcpu->vm;
int32_t ret = -EINVAL;
struct acrn_mmiodev mmiodev;
/* We should only de-assign a device from a post-launched VM at creating/shutdown/reset time */
if ((is_paused_vm(target_vm) || is_created_vm(target_vm))) {
if (copy_from_gpa(vm, &mmiodev, param2, sizeof(mmiodev)) == 0) {
if (ept_is_valid_mr(target_vm, mmiodev.base_gpa, mmiodev.size)) {
ret = deassign_mmio_dev(target_vm, &mmiodev);
if (ret == 0) {
ret = assign_mmio_dev(vm, &mmiodev);
}
}
}
} else {
pr_err("vm[%d] %s failed!\n",target_vm->vm_id, __func__);
}
return ret;
}
/**
* @brief Set interrupt mapping info of ptdev.
*
* @param vcpu Pointer to vCPU that initiates the hypercall
* @param target_vm Pointer to target VM data structure
* @param param2 guest physical address. This gpa points to data structure of
* hc_ptdev_irq including intr remapping info
*
* @pre is_sos_vm(vcpu->vm)
* @return 0 on success, non-zero on error.
*/
int32_t hcall_set_ptdev_intr_info(struct acrn_vcpu *vcpu, struct acrn_vm *target_vm,
__unused uint64_t param1, uint64_t param2)
{
struct acrn_vm *vm = vcpu->vm;
int32_t ret = -1;
if (is_created_vm(target_vm)) {
struct hc_ptdev_irq irq;
if (copy_from_gpa(vm, &irq, param2, sizeof(irq)) == 0) {
if (irq.type == IRQ_INTX) {
struct pci_vdev *vdev;
union pci_bdf bdf = {.value = irq.virt_bdf};
struct acrn_vpci *vpci = &target_vm->vpci;
spinlock_obtain(&vpci->lock);
vdev = pci_find_vdev(vpci, bdf);
spinlock_release(&vpci->lock);
/*
* TODO: Change the hc_ptdev_irq structure member names
* virt_pin to virt_gsi
* phys_pin to phys_gsi
*/
if ((vdev != NULL) && (vdev->pdev->bdf.value == irq.phys_bdf)) {
if ((((!irq.intx.pic_pin) && (irq.intx.virt_pin < get_vm_gsicount(target_vm)))
|| ((irq.intx.pic_pin) && (irq.intx.virt_pin < vpic_pincount())))
&& is_gsi_valid(irq.intx.phys_pin)) {
ret = ptirq_add_intx_remapping(target_vm, irq.intx.virt_pin,
irq.intx.phys_pin, irq.intx.pic_pin);
} else {
pr_err("%s: Invalid phys pin or virt pin\n", __func__);
}
}
} else {
pr_err("%s: Invalid irq type: %u\n", __func__, irq.type);
}
}
}
return ret;
}
/**
* @brief Clear interrupt mapping info of ptdev.
*
* @param vcpu Pointer to vCPU that initiates the hypercall
* @param target_vm Pointer to target VM data structure
* @param param2 guest physical address. This gpa points to data structure of
* hc_ptdev_irq including intr remapping info
*
* @pre is_sos_vm(vcpu->vm)
* @return 0 on success, non-zero on error.
*/
int32_t hcall_reset_ptdev_intr_info(struct acrn_vcpu *vcpu, struct acrn_vm *target_vm,
__unused uint64_t param1, uint64_t param2)
{
struct acrn_vm *vm = vcpu->vm;
int32_t ret = -1;
if (is_created_vm(target_vm) || is_paused_vm(target_vm)) {
struct hc_ptdev_irq irq;
if (copy_from_gpa(vm, &irq, param2, sizeof(irq)) == 0) {
if (irq.type == IRQ_INTX) {
struct pci_vdev *vdev;
union pci_bdf bdf = {.value = irq.virt_bdf};
struct acrn_vpci *vpci = &target_vm->vpci;
spinlock_obtain(&vpci->lock);
vdev = pci_find_vdev(vpci, bdf);
spinlock_release(&vpci->lock);
/*
* TODO: Change the hc_ptdev_irq structure member names
* virt_pin to virt_gsi
* phys_pin to phys_gsi
*/
if ((vdev != NULL) && (vdev->pdev->bdf.value == irq.phys_bdf)) {
if (((!irq.intx.pic_pin) && (irq.intx.virt_pin < get_vm_gsicount(target_vm))) ||
((irq.intx.pic_pin) && (irq.intx.virt_pin < vpic_pincount()))) {
ptirq_remove_intx_remapping(target_vm, irq.intx.virt_pin, irq.intx.pic_pin);
ret = 0;
} else {
pr_err("%s: Invalid virt pin\n", __func__);
}
}
} else {
pr_err("%s: Invalid irq type: %u\n", __func__, irq.type);
}
}
}
return ret;
}
/**
* @brief Get VCPU Power state.
*
* @param vcpu Pointer to vCPU that initiates the hypercall
* @param target_vm Pointer to target VM data structure
* @param param1 cmd to show get which VCPU power state data
* @param param2 VCPU power state data
*
* @pre is_sos_vm(vcpu->vm)
* @return 0 on success, non-zero on error.
*/
int32_t hcall_get_cpu_pm_state(struct acrn_vcpu *vcpu, struct acrn_vm *target_vm, uint64_t param1, uint64_t param2)
{
struct acrn_vm *vm = vcpu->vm;
int32_t ret = -1;
uint64_t cmd = param1;
if (is_created_vm(target_vm)) {
switch (cmd & PMCMD_TYPE_MASK) {
case PMCMD_GET_PX_CNT: {
if (target_vm->pm.px_cnt != 0U) {
ret = copy_to_gpa(vm, &(target_vm->pm.px_cnt), param2, sizeof(target_vm->pm.px_cnt));
}
break;
}
case PMCMD_GET_PX_DATA: {
uint8_t pn;
struct cpu_px_data *px_data;
/* For now we put px data as per-vm,
* If it is stored as per-cpu in the future,
* we need to check PMCMD_VCPUID_MASK in cmd.
*/
if (target_vm->pm.px_cnt == 0U) {
break;
}
pn = (uint8_t)((cmd & PMCMD_STATE_NUM_MASK) >> PMCMD_STATE_NUM_SHIFT);
if (pn >= target_vm->pm.px_cnt) {
break;
}
px_data = target_vm->pm.px_data + pn;
ret = copy_to_gpa(vm, px_data, param2, sizeof(struct cpu_px_data));
break;
}
case PMCMD_GET_CX_CNT: {
if (target_vm->pm.cx_cnt != 0U) {
ret = copy_to_gpa(vm, &(target_vm->pm.cx_cnt), param2, sizeof(target_vm->pm.cx_cnt));
}
break;
}
case PMCMD_GET_CX_DATA: {
uint8_t cx_idx;
struct cpu_cx_data *cx_data;
if (target_vm->pm.cx_cnt == 0U) {
break;
}
cx_idx = (uint8_t)
((cmd & PMCMD_STATE_NUM_MASK) >> PMCMD_STATE_NUM_SHIFT);
if ((cx_idx == 0U) || (cx_idx > target_vm->pm.cx_cnt)) {
break;
}
cx_data = target_vm->pm.cx_data + cx_idx;
ret = copy_to_gpa(vm, cx_data, param2, sizeof(struct cpu_cx_data));
break;
}
default:
/* invalid command */
break;
}
}
return ret;
}
/**
* @brief Get VCPU a VM's interrupt count data.
*
* @param vcpu Pointer to vCPU that initiates the hypercall
* @param target_vm Pointer to target VM data structure
* @param param2 guest physical address. This gpa points to data structure of
* acrn_intr_monitor
*
* @pre is_sos_vm(vcpu->vm)
* @return 0 on success, non-zero on error.
*/
int32_t hcall_vm_intr_monitor(struct acrn_vcpu *vcpu, struct acrn_vm *target_vm,
__unused uint64_t param1, uint64_t param2)
{
struct acrn_vm *vm = vcpu->vm;
int32_t status = -EINVAL;
struct acrn_intr_monitor *intr_hdr;
uint64_t hpa;
if (!is_poweroff_vm(target_vm)) {
/* the param for this hypercall is page aligned */
hpa = gpa2hpa(vm, param2);
if (hpa != INVALID_HPA) {
intr_hdr = (struct acrn_intr_monitor *)hpa2hva(hpa);
stac();
if (intr_hdr->buf_cnt <= (MAX_PTDEV_NUM * 2U)) {
switch (intr_hdr->cmd) {
case INTR_CMD_GET_DATA:
intr_hdr->buf_cnt = ptirq_get_intr_data(target_vm,
intr_hdr->buffer, intr_hdr->buf_cnt);
break;
case INTR_CMD_DELAY_INT:
/* buffer[0] is the delay time (in MS), if 0 to cancel delay */
target_vm->intr_inject_delay_delta =
intr_hdr->buffer[0] * TICKS_PER_MS;
break;
default:
/* if cmd wrong it goes here should not happen */
break;
}
status = 0;
}
clac();
}
}
return status;
}
/**
* @brief set upcall notifier vector
*
* This is the API that helps to switch the notifer vecotr. If this API is
* not called, the hypervisor will use the default notifier vector(0xF3)
* to notify the SOS kernel.
*
* @param vcpu Pointer to vCPU that initiates the hypercall
* @param param1 the expected notifier vector from guest
*
* @pre is_sos_vm(vcpu->vm)
* @return 0 on success, non-zero on error.
*/
int32_t hcall_set_callback_vector(__unused struct acrn_vcpu *vcpu, __unused struct acrn_vm *target_vm,
uint64_t param1, __unused uint64_t param2)
{
int32_t ret;
if ((param1 > NR_MAX_VECTOR) || (param1 < VECTOR_DYNAMIC_START)) {
pr_err("%s: Invalid passed vector\n", __func__);
ret = -EINVAL;
} else {
set_vhm_notification_vector((uint32_t)param1);
ret = 0;
}
return ret;
}
/*
* @pre dev != NULL
*/
static struct emul_dev_ops *find_emul_dev_ops(struct acrn_emul_dev *dev)
{
struct emul_dev_ops *op = NULL;
uint32_t i;
for (i = 0U; i < ARRAY_SIZE(emul_dev_ops_tbl); i++) {
if (emul_dev_ops_tbl[i].dev_id == dev->dev_id.value) {
op = &emul_dev_ops_tbl[i];
break;
}
}
return op;
}
/**
* @brief Add an emulated device in hypervisor.
*
* @param vcpu Pointer to vCPU that initiates the hypercall
* @param target_vm Pointer to target VM data structure
* @param param guest physical address. This gpa points to data structure of
* acrn_emul_dev including information about PCI or legacy devices
*
* @pre is_sos_vm(vcpu->vm)
* @return 0 on success, non-zero on error.
*/
int32_t hcall_add_vdev(struct acrn_vcpu *vcpu, struct acrn_vm *target_vm, __unused uint64_t param1, uint64_t param2)
{
struct acrn_vm *vm = vcpu->vm;
int32_t ret = -EINVAL;
struct acrn_emul_dev dev;
struct emul_dev_ops *op;
/* We should only create a device to a post-launched VM at creating time for safety, not runtime or other cases*/
if (is_created_vm(target_vm)) {
if (copy_from_gpa(vm, &dev, param2, sizeof(dev)) == 0) {
op = find_emul_dev_ops(&dev);
if ((op != NULL) && (op->create != NULL)) {
ret = op->create(target_vm, &dev);
}
}
} else {
pr_err("%s, vm[%d] is not a postlaunched VM, or not in CREATED status to create a vdev\n", __func__, target_vm->vm_id);
}
return ret;
}
/**
* @brief Remove an emulated device in hypervisor.
*
* @param vcpu Pointer to vCPU that initiates the hypercall
* @param target_vm Pointer to target VM data structure
* @param param guest physical address. This gpa points to data structure of
* acrn_emul_dev including information about PCI or legacy devices
*
* @pre is_sos_vm(vcpu->vm)
* @return 0 on success, non-zero on error.
*/
int32_t hcall_remove_vdev(struct acrn_vcpu *vcpu, struct acrn_vm *target_vm, __unused uint64_t param1, uint64_t param2)
{
struct acrn_vm *vm = vcpu->vm;
int32_t ret = -EINVAL;
struct acrn_emul_dev dev;
struct pci_vdev *vdev;
struct emul_dev_ops *op;
union pci_bdf bdf;
/* We should only destroy a device to a post-launched VM at creating or pausing time for safety, not runtime or other cases*/
if (is_created_vm(target_vm) || is_paused_vm(target_vm)) {
if (copy_from_gpa(vm, &dev, param2, sizeof(dev)) == 0) {
op = find_emul_dev_ops(&dev);
if (op != NULL) {
bdf.value = (uint16_t) dev.slot;
vdev = pci_find_vdev(&target_vm->vpci, bdf);
if (vdev != NULL) {
vdev->pci_dev_config->vbdf.value = UNASSIGNED_VBDF;
if (op->destroy != NULL) {
ret = op->destroy(vdev);
} else {
ret = 0;
}
} else {
pr_warn("%s, failed to destroy emulated device %x:%x.%x\n",
__func__, bdf.bits.b, bdf.bits.d, bdf.bits.f);
}
}
}
} else {
pr_err("%s, vm[%d] is not a postlaunched VM, or not in CREATED/PAUSED status to destroy a vdev\n", __func__, target_vm->vm_id);
}
return ret;
}