acrn-hypervisor/hypervisor/arch/x86/guest/guest_memory.c

443 lines
11 KiB
C

/*
* Copyright (C) 2018 Intel Corporation. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <types.h>
#include <errno.h>
#include <guest_memory.h>
#include <vcpu.h>
#include <vm.h>
#include <vmcs.h>
#include <mmu.h>
#include <ept.h>
#include <logmsg.h>
#define ACRN_DBG_GUEST 6U
struct page_walk_info {
uint64_t top_entry; /* Top level paging structure entry */
uint32_t level;
uint32_t width;
bool is_user_mode_access;
bool is_write_access;
bool is_inst_fetch;
bool pse; /* CR4.PSE for 32bit paing,
* true for PAE/4-level paing */
bool wp; /* CR0.WP */
bool nxe; /* MSR_IA32_EFER_NXE_BIT */
bool is_smap_on;
bool is_smep_on;
};
enum vm_paging_mode get_vcpu_paging_mode(struct acrn_vcpu *vcpu)
{
enum vm_cpu_mode cpu_mode;
enum vm_paging_mode ret;
cpu_mode = get_vcpu_mode(vcpu);
if (cpu_mode == CPU_MODE_REAL) {
ret = PAGING_MODE_0_LEVEL;
} else if (cpu_mode == CPU_MODE_PROTECTED) {
if (is_pae(vcpu)) {
ret = PAGING_MODE_3_LEVEL;
} else if (is_paging_enabled(vcpu)) {
ret = PAGING_MODE_2_LEVEL;
} else {
ret = PAGING_MODE_0_LEVEL;
}
} else { /* compatibility or 64bit mode */
ret = PAGING_MODE_4_LEVEL;
}
return ret;
}
/* TODO: Add code to check for Revserved bits, SMAP and PKE when do translation
* during page walk */
static int32_t local_gva2gpa_common(struct acrn_vcpu *vcpu, const struct page_walk_info *pw_info,
uint64_t gva, uint64_t *gpa, uint32_t *err_code)
{
uint32_t i;
uint64_t index;
uint32_t shift;
void *base;
uint64_t entry = 0U;
uint64_t addr;
uint64_t page_size = PAGE_SIZE_4K;
int32_t ret = 0;
int32_t fault = 0;
bool is_user_mode_addr = true;
bool is_page_rw_flags_on = true;
if (pw_info->level < 1U) {
ret = -EINVAL;
} else {
addr = pw_info->top_entry;
i = pw_info->level;
stac();
while ((i != 0U) && (fault == 0)) {
i--;
addr = addr & IA32E_REF_MASK;
base = gpa2hva(vcpu->vm, addr);
if (base == NULL) {
fault = 1;
} else {
shift = (i * pw_info->width) + 12U;
index = (gva >> shift) & ((1UL << pw_info->width) - 1UL);
page_size = 1UL << shift;
if (pw_info->width == 10U) {
uint32_t *base32 = (uint32_t *)base;
/* 32bit entry */
entry = (uint64_t)(*(base32 + index));
} else {
uint64_t *base64 = (uint64_t *)base;
entry = *(base64 + index);
}
/* check if the entry present */
if ((entry & PAGE_PRESENT) == 0U) {
fault = 1;
}
/* check for R/W */
if ((fault == 0) && ((entry & PAGE_RW) == 0U)) {
if (pw_info->is_write_access &&
(pw_info->is_user_mode_access || pw_info->wp)) {
/* Case1: Supermode and wp is 1
* Case2: Usermode */
fault = 1;
}
is_page_rw_flags_on = false;
}
}
/* check for nx, since for 32-bit paing, the XD bit is
* reserved(0), use the same logic as PAE/4-level paging */
if ((fault == 0) && pw_info->is_inst_fetch && pw_info->nxe &&
((entry & PAGE_NX) != 0U)) {
fault = 1;
}
/* check for U/S */
if ((fault == 0) && ((entry & PAGE_USER) == 0U)) {
is_user_mode_addr = false;
if (pw_info->is_user_mode_access) {
fault = 1;
}
}
if ((fault == 0) && pw_info->pse &&
((i > 0U) && ((entry & PAGE_PSE) != 0U))) {
break;
}
addr = entry;
}
/* When SMAP/SMEP is on, we only need to apply check when address is
* user-mode address.
* Also SMAP/SMEP only impact the supervisor-mode access.
*/
/* if smap is enabled and supervisor-mode access */
if ((fault == 0) && pw_info->is_smap_on && (!pw_info->is_user_mode_access) &&
is_user_mode_addr) {
bool acflag = ((vcpu_get_rflags(vcpu) & RFLAGS_AC) != 0UL);
/* read from user mode address, eflags.ac = 0 */
if ((!pw_info->is_write_access) && (!acflag)) {
fault = 1;
} else if (pw_info->is_write_access) {
/* write to user mode address */
/* cr0.wp = 0, eflags.ac = 0 */
if ((!pw_info->wp) && (!acflag)) {
fault = 1;
}
/* cr0.wp = 1, eflags.ac = 1, r/w flag is 0
* on any paging structure entry
*/
if (pw_info->wp && acflag && (!is_page_rw_flags_on)) {
fault = 1;
}
/* cr0.wp = 1, eflags.ac = 0 */
if (pw_info->wp && (!acflag)) {
fault = 1;
}
} else {
/* do nothing */
}
}
/* instruction fetch from user-mode address, smep on */
if ((fault == 0) && pw_info->is_smep_on && (!pw_info->is_user_mode_access) &&
is_user_mode_addr && pw_info->is_inst_fetch) {
fault = 1;
}
if (fault == 0) {
entry >>= shift;
/* shift left 12bit more and back to clear XD/Prot Key/Ignored bits */
entry <<= (shift + 12U);
entry >>= 12U;
*gpa = entry | (gva & (page_size - 1UL));
}
clac();
if (fault != 0) {
ret = -EFAULT;
*err_code |= PAGE_FAULT_P_FLAG;
}
}
return ret;
}
static int32_t local_gva2gpa_pae(struct acrn_vcpu *vcpu, struct page_walk_info *pw_info,
uint64_t gva, uint64_t *gpa, uint32_t *err_code)
{
int32_t index;
uint64_t *base;
uint64_t entry;
uint64_t addr;
int32_t ret = -EFAULT;
addr = get_pae_pdpt_addr(pw_info->top_entry);
base = (uint64_t *)gpa2hva(vcpu->vm, addr);
if (base != NULL) {
index = (gva >> 30U) & 0x3UL;
entry = base[index];
if ((entry & PAGE_PRESENT) != 0U) {
pw_info->level = 2U;
pw_info->top_entry = entry;
ret = local_gva2gpa_common(vcpu, pw_info, gva, gpa, err_code);
}
}
return ret;
}
/* Refer to SDM Vol.3A 6-39 section 6.15 for the format of paging fault error
* code.
*
* Caller should set the contect of err_code properly according to the address
* usage when calling this function:
* - If it is an address for write, set PAGE_FAULT_WR_FLAG in err_code.
* - If it is an address for instruction featch, set PAGE_FAULT_ID_FLAG in
* err_code.
* Caller should check the return value to confirm if the function success or
* not.
* If a protection volation detected during page walk, this function still will
* give the gpa translated, it is up to caller to decide if it need to inject a
* #PF or not.
* - Return 0 for success.
* - Return -EINVAL for invalid parameter.
* - Return -EFAULT for paging fault, and refer to err_code for paging fault
* error code.
*/
int32_t gva2gpa(struct acrn_vcpu *vcpu, uint64_t gva, uint64_t *gpa,
uint32_t *err_code)
{
enum vm_paging_mode pm = get_vcpu_paging_mode(vcpu);
struct page_walk_info pw_info;
int32_t ret = 0;
if ((gpa == NULL) || (err_code == NULL)) {
ret = -EINVAL;
} else {
*gpa = 0UL;
pw_info.top_entry = exec_vmread(VMX_GUEST_CR3);
pw_info.level = (uint32_t)pm;
pw_info.is_write_access = ((*err_code & PAGE_FAULT_WR_FLAG) != 0U);
pw_info.is_inst_fetch = ((*err_code & PAGE_FAULT_ID_FLAG) != 0U);
/* SDM vol3 27.3.2
* If the segment register was unusable, the base, select and some
* bits of access rights are undefined. With the exception of
* DPL of SS
* and others.
* So we use DPL of SS access rights field for guest DPL.
*/
pw_info.is_user_mode_access = (((exec_vmread32(VMX_GUEST_SS_ATTR) >> 5U) & 0x3U) == 3U);
pw_info.pse = true;
pw_info.nxe = ((vcpu_get_efer(vcpu) & MSR_IA32_EFER_NXE_BIT) != 0UL);
pw_info.wp = ((vcpu_get_cr0(vcpu) & CR0_WP) != 0UL);
pw_info.is_smap_on = ((vcpu_get_cr4(vcpu) & CR4_SMAP) != 0UL);
pw_info.is_smep_on = ((vcpu_get_cr4(vcpu) & CR4_SMEP) != 0UL);
*err_code &= ~PAGE_FAULT_P_FLAG;
if (pm == PAGING_MODE_4_LEVEL) {
pw_info.width = 9U;
ret = local_gva2gpa_common(vcpu, &pw_info, gva, gpa, err_code);
} else if (pm == PAGING_MODE_3_LEVEL) {
pw_info.width = 9U;
ret = local_gva2gpa_pae(vcpu, &pw_info, gva, gpa, err_code);
} else if (pm == PAGING_MODE_2_LEVEL) {
pw_info.width = 10U;
pw_info.pse = ((vcpu_get_cr4(vcpu) & CR4_PSE) != 0UL);
pw_info.nxe = false;
ret = local_gva2gpa_common(vcpu, &pw_info, gva, gpa, err_code);
} else {
*gpa = gva;
}
if (ret == -EFAULT) {
if (pw_info.is_user_mode_access) {
*err_code |= PAGE_FAULT_US_FLAG;
}
}
}
return ret;
}
static inline uint32_t local_copy_gpa(struct acrn_vm *vm, void *h_ptr, uint64_t gpa,
uint32_t size, uint32_t fix_pg_size, bool cp_from_vm)
{
uint64_t hpa;
uint32_t offset_in_pg, len, pg_size;
void *g_ptr;
hpa = local_gpa2hpa(vm, gpa, &pg_size);
if (hpa == INVALID_HPA) {
pr_err("%s,vm[%hu] gpa 0x%llx,GPA is unmapping",
__func__, vm->vm_id, gpa);
len = 0U;
} else {
if (fix_pg_size != 0U) {
pg_size = fix_pg_size;
}
offset_in_pg = (uint32_t)gpa & (pg_size - 1U);
len = (size > (pg_size - offset_in_pg)) ? (pg_size - offset_in_pg) : size;
g_ptr = hpa2hva(hpa);
stac();
if (cp_from_vm) {
(void)memcpy_s(h_ptr, len, g_ptr, len);
} else {
(void)memcpy_s(g_ptr, len, h_ptr, len);
}
clac();
}
return len;
}
static inline int32_t copy_gpa(struct acrn_vm *vm, void *h_ptr_arg, uint64_t gpa_arg,
uint32_t size_arg, bool cp_from_vm)
{
void *h_ptr = h_ptr_arg;
uint32_t len;
uint64_t gpa = gpa_arg;
uint32_t size = size_arg;
int32_t err = 0;
while (size > 0U) {
len = local_copy_gpa(vm, h_ptr, gpa, size, 0U, cp_from_vm);
if (len == 0U) {
err = -EINVAL;
break;
}
gpa += len;
h_ptr += len;
size -= len;
}
return err;
}
/*
* @pre vcpu != NULL && err_code != NULL && h_ptr_arg != NULL
*/
static inline int32_t copy_gva(struct acrn_vcpu *vcpu, void *h_ptr_arg, uint64_t gva_arg,
uint32_t size_arg, uint32_t *err_code, uint64_t *fault_addr,
bool cp_from_vm)
{
void *h_ptr = h_ptr_arg;
uint64_t gpa = 0UL;
int32_t ret = 0;
uint32_t len;
uint64_t gva = gva_arg;
uint32_t size = size_arg;
while ((size > 0U) && (ret == 0)) {
ret = gva2gpa(vcpu, gva, &gpa, err_code);
if (ret >= 0) {
len = local_copy_gpa(vcpu->vm, h_ptr, gpa, size, PAGE_SIZE_4K, cp_from_vm);
if (len != 0U) {
gva += len;
h_ptr += len;
size -= len;
} else {
ret = -EINVAL;
}
} else {
*fault_addr = gva;
pr_err("error[%d] in GVA2GPA, err_code=0x%x", ret, *err_code);
}
}
return ret;
}
/* @pre Caller(Guest) should make sure gpa is continuous.
* - gpa from hypercall input which from kernel stack is gpa continuous, not
* support kernel stack from vmap
* - some other gpa from hypercall parameters, VHM should make sure it's
* continuous
* @pre Pointer vm is non-NULL
*/
int32_t copy_from_gpa(struct acrn_vm *vm, void *h_ptr, uint64_t gpa, uint32_t size)
{
return copy_gpa(vm, h_ptr, gpa, size, 1);
}
/* @pre Caller(Guest) should make sure gpa is continuous.
* - gpa from hypercall input which from kernel stack is gpa continuous, not
* support kernel stack from vmap
* - some other gpa from hypercall parameters, VHM should make sure it's
* continuous
* @pre Pointer vm is non-NULL
*/
int32_t copy_to_gpa(struct acrn_vm *vm, void *h_ptr, uint64_t gpa, uint32_t size)
{
return copy_gpa(vm, h_ptr, gpa, size, 0);
}
int32_t copy_from_gva(struct acrn_vcpu *vcpu, void *h_ptr, uint64_t gva,
uint32_t size, uint32_t *err_code, uint64_t *fault_addr)
{
return copy_gva(vcpu, h_ptr, gva, size, err_code, fault_addr, 1);
}
int32_t copy_to_gva(struct acrn_vcpu *vcpu, void *h_ptr, uint64_t gva,
uint32_t size, uint32_t *err_code, uint64_t *fault_addr)
{
return copy_gva(vcpu, h_ptr, gva, size, err_code, fault_addr, 0);
}
/* gpa --> hpa -->hva */
void *gpa2hva(struct acrn_vm *vm, uint64_t x)
{
return hpa2hva(gpa2hpa(vm, x));
}
uint64_t hva2gpa(struct acrn_vm *vm, void *x)
{
return (is_sos_vm(vm)) ? sos_vm_hpa2gpa(hva2hpa(x)) : INVALID_GPA;
}