acrn-hypervisor/hypervisor/include/arch/x86/asm/pgtable.h

342 lines
7.7 KiB
C

/*
* Copyright (C) 2018 Intel Corporation.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
/**
* @file pgtable.h
*
* @brief Address translation and page table operations
*/
#ifndef PGTABLE_H
#define PGTABLE_H
#include <asm/page.h>
#define PAGE_PRESENT (1UL << 0U)
#define PAGE_RW (1UL << 1U)
#define PAGE_USER (1UL << 2U)
#define PAGE_PWT (1UL << 3U)
#define PAGE_PCD (1UL << 4U)
#define PAGE_ACCESSED (1UL << 5U)
#define PAGE_DIRTY (1UL << 6U)
#define PAGE_PSE (1UL << 7U)
#define PAGE_GLOBAL (1UL << 8U)
#define PAGE_PAT_LARGE (1UL << 12U)
#define PAGE_NX (1UL << 63U)
#define PAGE_CACHE_MASK (PAGE_PCD | PAGE_PWT)
#define PAGE_CACHE_WB 0UL
#define PAGE_CACHE_WT PAGE_PWT
#define PAGE_CACHE_UC_MINUS PAGE_PCD
#define PAGE_CACHE_UC (PAGE_PCD | PAGE_PWT)
#define PAGE_ATTR_USER (PAGE_PRESENT | PAGE_RW | PAGE_USER | PAGE_NX)
/**
* @defgroup ept_mem_access_right EPT Memory Access Right
*
* This is a group that includes EPT Memory Access Right Definitions.
*
* @{
*/
/**
* @brief EPT memory access right is read-only.
*/
#define EPT_RD (1UL << 0U)
/**
* @brief EPT memory access right is read/write.
*/
#define EPT_WR (1UL << 1U)
/**
* @brief EPT memory access right is executable.
*/
#define EPT_EXE (1UL << 2U)
/**
* @brief EPT memory access right is read/write and executable.
*/
#define EPT_RWX (EPT_RD | EPT_WR | EPT_EXE)
/**
* @}
*/
/* End of ept_mem_access_right */
/**
* @defgroup ept_mem_type EPT Memory Type
*
* This is a group that includes EPT Memory Type Definitions.
*
* @{
*/
/**
* @brief EPT memory type is specified in bits 5:3 of the EPT paging-structure entry.
*/
#define EPT_MT_SHIFT 3U
/**
* @brief EPT memory type is uncacheable.
*/
#define EPT_UNCACHED (0UL << EPT_MT_SHIFT)
/**
* @brief EPT memory type is write combining.
*/
#define EPT_WC (1UL << EPT_MT_SHIFT)
/**
* @brief EPT memory type is write through.
*/
#define EPT_WT (4UL << EPT_MT_SHIFT)
/**
* @brief EPT memory type is write protected.
*/
#define EPT_WP (5UL << EPT_MT_SHIFT)
/**
* @brief EPT memory type is write back.
*/
#define EPT_WB (6UL << EPT_MT_SHIFT)
/**
* @brief Ignore PAT memory type.
*/
#define EPT_IGNORE_PAT (1UL << 6U)
/**
* @}
*/
/* End of ept_mem_type */
#define EPT_MT_MASK (7UL << EPT_MT_SHIFT)
#define EPT_VE (1UL << 63U)
/* EPT leaf entry bits (bit 52 - bit 63) should be maksed when calculate PFN */
#define EPT_PFN_HIGH_MASK 0xFFF0000000000000UL
#define PML4E_SHIFT 39U
#define PTRS_PER_PML4E 512UL
#define PML4E_SIZE (1UL << PML4E_SHIFT)
#define PML4E_MASK (~(PML4E_SIZE - 1UL))
#define PDPTE_SHIFT 30U
#define PTRS_PER_PDPTE 512UL
#define PDPTE_SIZE (1UL << PDPTE_SHIFT)
#define PDPTE_MASK (~(PDPTE_SIZE - 1UL))
#define PDE_SHIFT 21U
#define PTRS_PER_PDE 512UL
#define PDE_SIZE (1UL << PDE_SHIFT)
#define PDE_MASK (~(PDE_SIZE - 1UL))
#define PTE_SHIFT 12U
#define PTRS_PER_PTE 512UL
#define PTE_SIZE (1UL << PTE_SHIFT)
#define PTE_MASK (~(PTE_SIZE - 1UL))
/* TODO: PAGE_MASK & PHYSICAL_MASK */
#define PML4E_PFN_MASK 0x0000FFFFFFFFF000UL
#define PDPTE_PFN_MASK 0x0000FFFFFFFFF000UL
#define PDE_PFN_MASK 0x0000FFFFFFFFF000UL
#define EPT_ENTRY_PFN_MASK ((~EPT_PFN_HIGH_MASK) & PAGE_MASK)
/**
* @brief Page tables level in IA32 paging mode
*/
enum _page_table_level {
/**
* @brief The PML4 level in the page tables
*/
IA32E_PML4 = 0,
/**
* @brief The Page-Directory-Pointer-Table level in the page tables
*/
IA32E_PDPT = 1,
/**
* @brief The Page-Directory level in the page tables
*/
IA32E_PD = 2,
/**
* @brief The Page-Table level in the page tables
*/
IA32E_PT = 3,
};
struct pgtable {
uint64_t default_access_right;
uint64_t pgentry_present_mask;
struct page_pool *pool;
bool (*large_page_support)(enum _page_table_level level, uint64_t prot);
void (*clflush_pagewalk)(const void *p);
void (*tweak_exe_right)(uint64_t *entry);
void (*recover_exe_right)(uint64_t *entry);
};
static inline bool pgentry_present(const struct pgtable *table, uint64_t pte)
{
return ((table->pgentry_present_mask & (pte)) != 0UL);
}
/**
* @brief Address space translation
*
* @addtogroup acrn_mem ACRN Memory Management
* @{
*/
/* hpa <--> hva, now it is 1:1 mapping */
/**
* @brief Translate host-physical address to host-virtual address
*
* @param[in] x The specified host-physical address
*
* @return The translated host-virtual address
*/
static inline void *hpa2hva_early(uint64_t x)
{
return (void *)x;
}
/**
* @brief Translate host-virtual address to host-physical address
*
* @param[in] x The specified host-virtual address
*
* @return The translated host-physical address
*/
static inline uint64_t hva2hpa_early(void *x)
{
return (uint64_t)x;
}
/**
* @brief Translate host-physical address to host-virtual address
*
* @param[in] x The specified host-physical address
*
* @return The translated host-virtual address
*/
static inline void *hpa2hva(uint64_t x)
{
return (void *)x;
}
/**
* @brief Translate host-virtual address to host-physical address
*
* @param[in] x The specified host-virtual address
*
* @return The translated host-physical address
*/
static inline uint64_t hva2hpa(const void *x)
{
return (uint64_t)x;
}
static inline uint64_t pml4e_index(uint64_t address)
{
return (address >> PML4E_SHIFT) & (PTRS_PER_PML4E - 1UL);
}
static inline uint64_t pdpte_index(uint64_t address)
{
return (address >> PDPTE_SHIFT) & (PTRS_PER_PDPTE - 1UL);
}
static inline uint64_t pde_index(uint64_t address)
{
return (address >> PDE_SHIFT) & (PTRS_PER_PDE - 1UL);
}
static inline uint64_t pte_index(uint64_t address)
{
return (address >> PTE_SHIFT) & (PTRS_PER_PTE - 1UL);
}
static inline uint64_t *pml4e_page_vaddr(uint64_t pml4e)
{
return hpa2hva(pml4e & PML4E_PFN_MASK);
}
static inline uint64_t *pdpte_page_vaddr(uint64_t pdpte)
{
return hpa2hva(pdpte & PDPTE_PFN_MASK);
}
static inline uint64_t *pde_page_vaddr(uint64_t pde)
{
return hpa2hva(pde & PDE_PFN_MASK);
}
static inline uint64_t *pml4e_offset(uint64_t *pml4_page, uint64_t addr)
{
return pml4_page + pml4e_index(addr);
}
static inline uint64_t *pdpte_offset(const uint64_t *pml4e, uint64_t addr)
{
return pml4e_page_vaddr(*pml4e) + pdpte_index(addr);
}
static inline uint64_t *pde_offset(const uint64_t *pdpte, uint64_t addr)
{
return pdpte_page_vaddr(*pdpte) + pde_index(addr);
}
static inline uint64_t *pte_offset(const uint64_t *pde, uint64_t addr)
{
return pde_page_vaddr(*pde) + pte_index(addr);
}
/*
* pgentry may means pml4e/pdpte/pde/pte
*/
static inline uint64_t get_pgentry(const uint64_t *pte)
{
return *pte;
}
/*
* pgentry may means pml4e/pdpte/pde/pte
*/
static inline void set_pgentry(uint64_t *ptep, uint64_t pte, const struct pgtable *table)
{
*ptep = pte;
table->clflush_pagewalk(ptep);
}
static inline uint64_t pde_large(uint64_t pde)
{
return pde & PAGE_PSE;
}
static inline uint64_t pdpte_large(uint64_t pdpte)
{
return pdpte & PAGE_PSE;
}
void init_sanitized_page(uint64_t *sanitized_page, uint64_t hpa);
void *pgtable_create_root(const struct pgtable *table);
void *pgtable_create_trusty_root(const struct pgtable *table,
void *nworld_pml4_page, uint64_t prot_table_present, uint64_t prot_clr);
/**
*@pre (pml4_page != NULL) && (pg_size != NULL)
*/
const uint64_t *pgtable_lookup_entry(uint64_t *pml4_page, uint64_t addr,
uint64_t *pg_size, const struct pgtable *table);
void pgtable_add_map(uint64_t *pml4_page, uint64_t paddr_base,
uint64_t vaddr_base, uint64_t size,
uint64_t prot, const struct pgtable *table);
void pgtable_modify_or_del_map(uint64_t *pml4_page, uint64_t vaddr_base,
uint64_t size, uint64_t prot_set, uint64_t prot_clr,
const struct pgtable *table, uint32_t type);
/**
* @}
*/
#endif /* PGTABLE_H */