acrn-hypervisor/hypervisor/include/arch/x86/guest/vm.h

232 lines
7.3 KiB
C

/*
* Copyright (C) 2018 Intel Corporation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef VM_H_
#define VM_H_
enum vm_privilege_level {
VM_PRIVILEGE_LEVEL_HIGH = 0,
VM_PRIVILEGE_LEVEL_MEDIUM,
VM_PRIVILEGE_LEVEL_LOW
};
#define MAX_VM_NAME_LEN 16
struct vm_attr {
char name[MAX_VM_NAME_LEN]; /* Virtual machine name string */
int id; /* Virtual machine identifier */
int boot_idx; /* Index indicating the boot sequence for this VM */
};
struct vm_hw_info {
int num_vcpus; /* Number of total virtual cores */
int exp_num_vcpus; /* Number of real expected virtual cores */
int created_vcpus; /* Number of created vcpus */
struct vcpu **vcpu_array; /* vcpu array of this VM */
uint64_t gpa_lowtop; /* top lowmem gpa of this VM */
};
struct sw_linux {
void *ramdisk_src_addr;
void *ramdisk_load_addr;
uint32_t ramdisk_size;
void *bootargs_src_addr;
void *bootargs_load_addr;
uint32_t bootargs_size;
void *dtb_src_addr;
void *dtb_load_addr;
uint32_t dtb_size;
};
struct sw_kernel_info {
void *kernel_src_addr;
void *kernel_load_addr;
void *kernel_entry_addr;
uint32_t kernel_size;
};
struct vm_sw_info {
int kernel_type; /* Guest kernel type */
/* Kernel information (common for all guest types) */
struct sw_kernel_info kernel_info;
/* Additional information specific to Linux guests */
struct sw_linux linux_info;
/* HVA to IO shared page */
void *io_shared_page;
};
struct vm_pm_info {
uint8_t px_cnt; /* count of all Px states */
struct cpu_px_data px_data[MAX_PSTATE];
uint8_t cx_cnt; /* count of all Cx entries */
struct cpu_cx_data cx_data[MAX_CSTATE];
};
/* VM guest types */
#define VM_LINUX_GUEST 0x02
#define VM_MONO_GUEST 0x01
enum vpic_wire_mode {
VPIC_WIRE_INTR = 0,
VPIC_WIRE_LAPIC,
VPIC_WIRE_IOAPIC,
VPIC_WIRE_NULL
};
/* Enumerated type for VM states */
enum vm_state {
VM_CREATED = 0, /* VM created / awaiting start (boot) */
VM_STARTED, /* VM started (booted) */
VM_PAUSED, /* VM paused */
VM_STATE_UNKNOWN
};
/* Structure for VM state information */
struct vm_state_info {
enum vm_state state; /* State of the VM */
unsigned int privilege; /* Privilege level of the VM */
unsigned int boot_count;/* Number of times the VM has booted */
};
struct vm_arch {
uint64_t guest_init_pml4;/* Guest init pml4 */
/* EPT hierarchy for Normal World */
uint64_t nworld_eptp;
/* EPT hierarchy for Secure World
* Secure world can access Normal World's memory,
* but Normal World can not access Secure World's memory.
*/
uint64_t sworld_eptp;
uint64_t m2p; /* machine address to guest physical address */
void *tmp_pg_array; /* Page array for tmp guest paging struct */
void *iobitmap[2];/* IO bitmap page array base address for this VM */
void *msr_bitmap; /* MSR bitmap page base address for this VM */
void *virt_ioapic; /* Virtual IOAPIC base address */
/**
* A link to the IO handler of this VM.
* We only register io handle to this link
* when create VM on sequences and ungister it when
* destory VM. So there no need lock to prevent preempt.
* Besides, there only a few io handlers now, we don't
* need binary search temporary.
*/
struct vm_io_handler *io_handler;
/* reference to virtual platform to come here (as needed) */
};
#define CPUID_CHECK_SUBLEAF (1 << 0)
#define MAX_VM_VCPUID_ENTRIES 64
struct vcpuid_entry {
uint32_t eax;
uint32_t ebx;
uint32_t ecx;
uint32_t edx;
uint32_t leaf;
uint32_t subleaf;
uint32_t flags;
uint32_t padding;
};
struct vpic;
struct vm {
struct vm_attr attr; /* Reference to this VM's attributes */
struct vm_hw_info hw; /* Reference to this VM's HW information */
struct vm_sw_info sw; /* Reference to SW associated with this VM */
struct vm_pm_info pm; /* Reference to this VM's arch information */
struct vm_arch arch_vm; /* Reference to this VM's arch information */
struct vm_state_info state_info;/* State info of this VM */
enum vm_state state; /* VM state */
struct vcpu *current_vcpu; /* VCPU that caused vm exit */
void *vuart; /* Virtual UART */
struct vpic *vpic; /* Virtual PIC */
uint32_t vpic_wire_mode;
struct iommu_domain *iommu_domain; /* iommu domain of this VM */
struct list_head list; /* list of VM */
spinlock_t spinlock; /* Spin-lock used to protect VM modifications */
struct list_head mmio_list; /* list for mmio. This list is not updated
* when vm is active. So no lock needed
*/
struct _vm_shared_memory *shared_memory_area;
struct {
struct _vm_virtual_device_node *head;
struct _vm_virtual_device_node *tail;
} virtual_device_list;
unsigned char GUID[16];
struct secure_world_control sworld_control;
uint32_t vcpuid_entry_nr, vcpuid_level, vcpuid_xlevel;
struct vcpuid_entry vcpuid_entries[MAX_VM_VCPUID_ENTRIES];
};
struct vm_description {
/* Virtual machine identifier, assigned by the system */
char *vm_attr_name;
/* The logical CPU IDs associated with this VM - The first CPU listed
* will be the VM's BSP
*/
int *vm_hw_logical_core_ids;
unsigned char GUID[16]; /* GUID of the vm will be created */
int vm_hw_num_cores; /* Number of virtual cores */
/* Indicates to APs that the BSP has created a VM for this
* description
*/
bool vm_created;
/* Index indicating VM's privilege level */
unsigned int vm_state_info_privilege;
/* Whether secure world is enabled for current VM. */
bool sworld_enabled;
};
struct vm_description_array {
int num_vm_desc;
struct vm_description vm_desc_array[];
};
int shutdown_vm(struct vm *vm);
int pause_vm(struct vm *vm);
int start_vm(struct vm *vm);
int create_vm(struct vm_description *vm_desc, struct vm **vm);
int prepare_vm0(void);
void vm_fixup(struct vm *vm);
struct vm *get_vm_from_vmid(int vm_id);
struct vm_description *get_vm_desc(int idx);
extern struct list_head vm_list;
extern spinlock_t vm_list_lock;
extern bool x2apic_enabled;
#endif /* VM_H_ */