acrn-hypervisor/devicemodel/hw/uart_core.c

743 lines
15 KiB
C

/*-
* Copyright (c) 2012 NetApp, Inc.
* Copyright (c) 2013 Neel Natu <neel@freebsd.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <fcntl.h>
#include <termios.h>
#include <unistd.h>
#include <stdbool.h>
#include <string.h>
#include <pthread.h>
#include <sys/errno.h>
#include "types.h"
#include "mevent.h"
#include "uart_core.h"
#include "ns16550.h"
#include "dm.h"
#define COM1_BASE 0x3F8
#define COM1_IRQ 4
#define COM2_BASE 0x2F8
#define COM2_IRQ 3
#define DEFAULT_RCLK 1843200
#define DEFAULT_BAUD 9600
#define FCR_RX_MASK 0xC0
#define MCR_OUT1 0x04
#define MCR_OUT2 0x08
#define MSR_DELTA_MASK 0x0f
#ifndef REG_SCR
#define REG_SCR com_scr
#endif
#define FIFOSZ 256
static struct termios tio_stdio_orig;
static struct {
int baseaddr;
int irq;
bool inuse;
} uart_lres[] = {
{ COM1_BASE, COM1_IRQ, false},
{ COM2_BASE, COM2_IRQ, false},
};
#define UART_NLDEVS (ARRAY_SIZE(uart_lres))
struct fifo {
uint8_t buf[FIFOSZ];
int rindex; /* index to read from */
int windex; /* index to write to */
int num; /* number of characters in the fifo */
int size; /* size of the fifo */
};
struct ttyfd {
bool opened;
int fd_in; /* tty device file descriptor */
int fd_out; /* stdin=0 stdout=1 should be different, when use stdio*/
struct termios tio_orig, tio_new; /* I/O Terminals */
};
struct uart_vdev {
pthread_mutex_t mtx; /* protects all elements */
uint8_t data; /* Data register (R/W) */
uint8_t ier; /* Interrupt enable register (R/W) */
uint8_t lcr; /* Line control register (R/W) */
uint8_t mcr; /* Modem control register (R/W) */
uint8_t lsr; /* Line status register (R/W) */
uint8_t msr; /* Modem status register (R/W) */
uint8_t fcr; /* FIFO control register (W) */
uint8_t scr; /* Scratch register (R/W) */
uint8_t dll; /* Baudrate divisor latch LSB */
uint8_t dlh; /* Baudrate divisor latch MSB */
struct fifo rxfifo;
struct mevent *mev;
struct ttyfd tty;
bool thre_int_pending; /* THRE interrupt pending */
void *arg;
uart_intr_func_t intr_assert;
uart_intr_func_t intr_deassert;
};
static void uart_drain(int fd, enum ev_type ev, void *arg);
static void
ttyclose(void)
{
tcsetattr(STDIN_FILENO, TCSANOW, &tio_stdio_orig);
}
static void
ttyopen(struct ttyfd *tf)
{
tcgetattr(tf->fd_in, &tf->tio_orig);
tf->tio_new = tf->tio_orig;
cfmakeraw(&tf->tio_new);
tf->tio_new.c_cflag |= CLOCAL;
tcsetattr(tf->fd_in, TCSANOW, &tf->tio_new);
if (tf->fd_in == STDIN_FILENO) {
tio_stdio_orig = tf->tio_orig;
atexit(ttyclose);
}
}
static int
ttyread(struct ttyfd *tf)
{
unsigned char rb;
if (read(tf->fd_in, &rb, 1) > 0)
return rb;
return -1;
}
static int
ttywrite(struct ttyfd *tf, unsigned char wb)
{
if (write(tf->fd_out, &wb, 1) > 0)
return 1;
return -1;
}
static void
rxfifo_reset(struct uart_vdev *uart, int size)
{
char flushbuf[32];
struct fifo *fifo;
ssize_t nread;
int error;
fifo = &uart->rxfifo;
bzero(fifo, sizeof(struct fifo));
fifo->size = size;
if (uart->tty.opened) {
/*
* Flush any unread input from the tty buffer.
*/
while (1) {
nread = read(uart->tty.fd_in, flushbuf, sizeof(flushbuf));
if (nread != sizeof(flushbuf))
break;
}
/*
* Enable mevent to trigger when new characters are available
* on the tty fd.
*/
if (isatty(uart->tty.fd_in)) {
error = mevent_enable(uart->mev);
assert(error == 0);
}
}
}
static int
rxfifo_available(struct uart_vdev *uart)
{
struct fifo *fifo;
fifo = &uart->rxfifo;
return (fifo->num < fifo->size);
}
static int
rxfifo_putchar(struct uart_vdev *uart, uint8_t ch)
{
struct fifo *fifo;
int error;
fifo = &uart->rxfifo;
if (fifo->num < fifo->size) {
fifo->buf[fifo->windex] = ch;
fifo->windex = (fifo->windex + 1) % fifo->size;
fifo->num++;
if (!rxfifo_available(uart)) {
if (uart->tty.opened) {
/*
* Disable mevent callback if the FIFO is full.
*/
if (isatty(uart->tty.fd_in)) {
error = mevent_disable(uart->mev);
assert(error == 0);
}
}
}
return 0;
} else
return -1;
}
static int
rxfifo_getchar(struct uart_vdev *uart)
{
struct fifo *fifo;
int c, error, wasfull;
wasfull = 0;
fifo = &uart->rxfifo;
if (fifo->num > 0) {
if (!rxfifo_available(uart))
wasfull = 1;
c = fifo->buf[fifo->rindex];
fifo->rindex = (fifo->rindex + 1) % fifo->size;
fifo->num--;
if (wasfull) {
if (uart->tty.opened && isatty(uart->tty.fd_in)) {
error = mevent_enable(uart->mev);
assert(error == 0);
}
}
return c;
} else
return -1;
}
static int
rxfifo_numchars(struct uart_vdev *uart)
{
struct fifo *fifo = &uart->rxfifo;
return fifo->num;
}
static void
uart_opentty(struct uart_vdev *uart)
{
ttyopen(&uart->tty);
if (isatty(uart->tty.fd_in)) {
uart->mev = mevent_add(uart->tty.fd_in, EVF_READ, uart_drain, uart, NULL, NULL);
assert(uart->mev != NULL);
}
}
static void
uart_closetty(struct uart_vdev *uart)
{
if (isatty(uart->tty.fd_in)) {
if (uart->tty.fd_in != STDIN_FILENO)
mevent_delete_close(uart->mev);
else
mevent_delete(uart->mev);
uart->mev = 0;
}
ttyclose();
}
static uint8_t
modem_status(uint8_t mcr)
{
uint8_t msr;
if (mcr & MCR_LOOPBACK) {
/*
* In the loopback mode certain bits from the MCR are
* reflected back into MSR.
*/
msr = 0;
if (mcr & MCR_RTS)
msr |= MSR_CTS;
if (mcr & MCR_DTR)
msr |= MSR_DSR;
if (mcr & MCR_OUT1)
msr |= MSR_RI;
if (mcr & MCR_OUT2)
msr |= MSR_DCD;
} else {
/*
* Always assert DCD and DSR so tty open doesn't block
* even if CLOCAL is turned off.
*/
msr = MSR_DCD | MSR_DSR;
}
assert((msr & MSR_DELTA_MASK) == 0);
return msr;
}
/*
* The IIR returns a prioritized interrupt reason:
* - receive data available
* - transmit holding register empty
* - modem status change
*
* Return an interrupt reason if one is available.
*/
static int
uart_intr_reason(struct uart_vdev *uart)
{
if ((uart->lsr & LSR_OE) != 0 && (uart->ier & IER_ERLS) != 0)
return IIR_RLS;
else if (rxfifo_numchars(uart) > 0 && (uart->ier & IER_ERXRDY) != 0)
return IIR_RXTOUT;
else if (uart->thre_int_pending && (uart->ier & IER_ETXRDY) != 0)
return IIR_TXRDY;
else if ((uart->msr & MSR_DELTA_MASK) != 0 &&
(uart->ier & IER_EMSC) != 0)
return IIR_MLSC;
else
return IIR_NOPEND;
}
static void
uart_reset(struct uart_vdev *uart)
{
uint16_t divisor;
divisor = DEFAULT_RCLK / DEFAULT_BAUD / 16;
uart->dll = divisor;
uart->dlh = divisor >> 16;
uart->msr = modem_status(uart->mcr);
rxfifo_reset(uart, 1); /* no fifo until enabled by software */
}
/*
* Toggle the COM port's intr pin depending on whether or not we have an
* interrupt condition to report to the processor.
*/
static void
uart_toggle_intr(struct uart_vdev *uart)
{
uint8_t intr_reason;
intr_reason = uart_intr_reason(uart);
if (intr_reason == IIR_NOPEND)
(*uart->intr_deassert)(uart->arg);
else
(*uart->intr_assert)(uart->arg);
}
static void
uart_drain(int fd, enum ev_type ev, void *arg)
{
struct uart_vdev *uart;
int ch;
uart = arg;
assert(fd == uart->tty.fd_in);
assert(ev == EVF_READ);
/*
* This routine is called in the context of the mevent thread
* to take out the uart lock to protect against concurrent
* access from a vCPU i/o exit
*/
pthread_mutex_lock(&uart->mtx);
if ((uart->mcr & MCR_LOOPBACK) != 0) {
(void) ttyread(&uart->tty);
} else {
while ((ch = ttyread(&uart->tty)) != -1)
rxfifo_putchar(uart, ch);
uart_toggle_intr(uart);
}
pthread_mutex_unlock(&uart->mtx);
}
void
uart_write(struct uart_vdev *uart, int offset, uint8_t value)
{
int fifosz;
uint8_t msr;
pthread_mutex_lock(&uart->mtx);
/*
* Take care of the special case DLAB accesses first
*/
if ((uart->lcr & LCR_DLAB) != 0) {
if (offset == REG_DLL) {
uart->dll = value;
goto done;
}
if (offset == REG_DLH) {
uart->dlh = value;
goto done;
}
}
switch (offset) {
case REG_DATA:
if (uart->mcr & MCR_LOOPBACK) {
if (rxfifo_putchar(uart, value) != 0)
uart->lsr |= LSR_OE;
} else if (uart->tty.opened) {
ttywrite(&uart->tty, value);
} /* else drop on floor */
uart->thre_int_pending = true;
break;
case REG_IER:
/*
* Apply mask so that bits 4-7 are 0
* Also enables bits 0-3 only if they're 1
*/
uart->ier = value & 0x0F;
break;
case REG_FCR:
/*
* When moving from FIFO and 16450 mode and vice versa,
* the FIFO contents are reset.
*/
if ((uart->fcr & FCR_ENABLE) ^ (value & FCR_ENABLE)) {
fifosz = (value & FCR_ENABLE) ? FIFOSZ : 1;
rxfifo_reset(uart, fifosz);
}
/*
* The FCR_ENABLE bit must be '1' for the programming
* of other FCR bits to be effective.
*/
if ((value & FCR_ENABLE) == 0) {
uart->fcr = 0;
} else {
if ((value & FCR_RCV_RST) != 0)
rxfifo_reset(uart, FIFOSZ);
uart->fcr = value &
(FCR_ENABLE | FCR_DMA | FCR_RX_MASK);
}
break;
case REG_LCR:
uart->lcr = value;
break;
case REG_MCR:
/* Apply mask so that bits 5-7 are 0 */
uart->mcr = value & 0x1F;
msr = modem_status(uart->mcr);
/*
* Detect if there has been any change between the
* previous and the new value of MSR. If there is
* then assert the appropriate MSR delta bit.
*/
if ((msr & MSR_CTS) ^ (uart->msr & MSR_CTS))
uart->msr |= MSR_DCTS;
if ((msr & MSR_DSR) ^ (uart->msr & MSR_DSR))
uart->msr |= MSR_DDSR;
if ((msr & MSR_DCD) ^ (uart->msr & MSR_DCD))
uart->msr |= MSR_DDCD;
if ((uart->msr & MSR_RI) != 0 && (msr & MSR_RI) == 0)
uart->msr |= MSR_TERI;
/*
* Update the value of MSR while retaining the delta
* bits.
*/
uart->msr &= MSR_DELTA_MASK;
uart->msr |= msr;
break;
case REG_LSR:
/*
* Line status register is not meant to be written to
* during normal operation.
*/
break;
case REG_MSR:
/*
* As far as I can tell MSR is a read-only register.
*/
break;
case REG_SCR:
uart->scr = value;
break;
default:
break;
}
done:
uart_toggle_intr(uart);
pthread_mutex_unlock(&uart->mtx);
}
uint8_t
uart_read(struct uart_vdev *uart, int offset)
{
uint8_t iir, intr_reason, reg;
pthread_mutex_lock(&uart->mtx);
/*
* Take care of the special case DLAB accesses first
*/
if ((uart->lcr & LCR_DLAB) != 0) {
if (offset == REG_DLL) {
reg = uart->dll;
goto done;
}
if (offset == REG_DLH) {
reg = uart->dlh;
goto done;
}
}
switch (offset) {
case REG_DATA:
reg = rxfifo_getchar(uart);
break;
case REG_IER:
reg = uart->ier;
break;
case REG_IIR:
iir = (uart->fcr & FCR_ENABLE) ? IIR_FIFO_MASK : 0;
intr_reason = uart_intr_reason(uart);
/*
* Deal with side effects of reading the IIR register
*/
if (intr_reason == IIR_TXRDY)
uart->thre_int_pending = false;
iir |= intr_reason;
reg = iir;
break;
case REG_LCR:
reg = uart->lcr;
break;
case REG_MCR:
reg = uart->mcr;
break;
case REG_LSR:
/* Transmitter is always ready for more data */
uart->lsr |= LSR_TEMT | LSR_THRE;
/* Check for new receive data */
if (rxfifo_numchars(uart) > 0)
uart->lsr |= LSR_RXRDY;
else
uart->lsr &= ~LSR_RXRDY;
reg = uart->lsr;
/* The LSR_OE bit is cleared on LSR read */
uart->lsr &= ~LSR_OE;
break;
case REG_MSR:
/*
* MSR delta bits are cleared on read
*/
reg = uart->msr;
uart->msr &= ~MSR_DELTA_MASK;
break;
case REG_SCR:
reg = uart->scr;
break;
default:
reg = 0xFF;
break;
}
done:
uart_toggle_intr(uart);
pthread_mutex_unlock(&uart->mtx);
return reg;
}
int
uart_legacy_alloc(int which, int *baseaddr, int *irq)
{
if (which < 0 || which >= UART_NLDEVS || uart_lres[which].inuse)
return -1;
uart_lres[which].inuse = true;
*baseaddr = uart_lres[which].baseaddr;
*irq = uart_lres[which].irq;
return 0;
}
void
uart_legacy_dealloc(int which)
{
uart_lres[which].inuse = false;
}
struct uart_vdev *
uart_init(uart_intr_func_t intr_assert, uart_intr_func_t intr_deassert,
void *arg)
{
struct uart_vdev *uart;
uart = calloc(1, sizeof(struct uart_vdev));
assert(uart != NULL);
uart->arg = arg;
uart->intr_assert = intr_assert;
uart->intr_deassert = intr_deassert;
pthread_mutex_init(&uart->mtx, NULL);
uart_reset(uart);
return uart;
}
void
uart_deinit(struct uart_vdev *uart)
{
if (uart) {
if (uart->tty.opened && uart->tty.fd_in == STDIN_FILENO) {
ttyclose();
stdio_in_use = false;
}
free(uart);
}
}
static int
uart_tty_backend(struct uart_vdev *uart, const char *opts)
{
int fd;
int retval;
retval = -1;
fd = open(opts, O_RDWR | O_NONBLOCK);
if (fd > 0 && isatty(fd)) {
uart->tty.fd_in = fd;
uart->tty.fd_out = fd;
uart->tty.opened = true;
retval = 0;
}
return retval;
}
int
uart_set_backend(struct uart_vdev *uart, const char *opts)
{
int retval;
retval = -1;
if (opts == NULL)
return -EINVAL;
if (strcmp("stdio", opts) == 0) {
if (!stdio_in_use) {
uart->tty.fd_in = STDIN_FILENO;
uart->tty.fd_out = STDOUT_FILENO;
uart->tty.opened = true;
stdio_in_use = true;
retval = 0;
}
} else if (uart_tty_backend(uart, opts) == 0) {
retval = 0;
}
if (retval)
return -EINVAL;
/* Make the backend file descriptor non-blocking */
if (retval == 0)
retval = fcntl(uart->tty.fd_in, F_SETFL, O_NONBLOCK);
if (retval == 0)
uart_opentty(uart);
return retval;
}
void
uart_release_backend(struct uart_vdev *uart, const char *opts)
{
if (opts == NULL)
return;
/*
* By current design, for the invalid PTY parameters, the virtual uarts
* are still expose to UOS but all data be dropped by backend service.
* The uart backend is not setup for this case, so don't try to release
* the uart backend in here.
* TODO: need re-visit the whole policy for such scenario in future.
*/
if (!uart->tty.opened)
return;
uart_closetty(uart);
if (strcmp("stdio", opts) == 0) {
stdio_in_use = false;
} else
close(uart->tty.fd_in);
uart->tty.fd_in = -1;
uart->tty.fd_out = -1;
uart->tty.opened = false;
}