acrn-hypervisor/hypervisor/arch/x86/cpu.c

795 lines
21 KiB
C

/*
* Copyright (C) 2018 Intel Corporation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <hypervisor.h>
#include <hv_lib.h>
#include <acrn_common.h>
#include <bsp_extern.h>
#include <hv_arch.h>
#include <schedule.h>
#include <version.h>
#include <hv_debug.h>
#include <cpu_state_tbl.h>
#ifdef CONFIG_EFI_STUB
extern uint32_t efi_physical_available_ap_bitmap;
#endif
uint64_t tsc_clock_freq = 1000000000;
spinlock_t cpu_secondary_spinlock = {
.head = 0,
.tail = 0
};
spinlock_t up_count_spinlock = {
.head = 0,
.tail = 0
};
void *per_cpu_data_base_ptr;
int phy_cpu_num = 0;
unsigned long pcpu_sync = 0;
uint32_t up_count = 0;
/* physical cpu active bitmap, support up to 64 cpus */
uint64_t pcpu_active_bitmap = 0;
DEFINE_CPU_DATA(uint8_t[STACK_SIZE], stack) __aligned(16);
DEFINE_CPU_DATA(uint8_t, lapic_id);
DEFINE_CPU_DATA(void *, vcpu);
DEFINE_CPU_DATA(int, state);
/* TODO: add more capability per requirement */
/*APICv features*/
#define VAPIC_FEATURE_VIRT_ACCESS (1 << 0)
#define VAPIC_FEATURE_VIRT_REG (1 << 1)
#define VAPIC_FEATURE_INTR_DELIVERY (1 << 2)
#define VAPIC_FEATURE_TPR_SHADOW (1 << 3)
#define VAPIC_FEATURE_POST_INTR (1 << 4)
#define VAPIC_FEATURE_VX2APIC_MODE (1 << 5)
struct cpu_capability {
uint8_t vapic_features;
};
static struct cpu_capability cpu_caps;
struct cpuinfo_x86 boot_cpu_data;
static void vapic_cap_detect(void);
static void cpu_xsave_init(void);
static void cpu_set_logical_id(uint32_t logical_id);
static void print_hv_banner(void);
int cpu_find_logical_id(uint32_t lapic_id);
#ifndef CONFIG_EFI_STUB
static void start_cpus(void);
#endif
static void pcpu_sync_sleep(unsigned long *sync, int mask_bit);
int ibrs_type;
static inline bool get_tsc_adjust_cap(void)
{
return !!(boot_cpu_data.cpuid_leaves[FEAT_7_0_EBX] & CPUID_EBX_TSC_ADJ);
}
static inline bool get_ibrs_ibpb_cap(void)
{
return !!(boot_cpu_data.cpuid_leaves[FEAT_7_0_EDX] &
CPUID_EDX_IBRS_IBPB);
}
static inline bool get_stibp_cap(void)
{
return !!(boot_cpu_data.cpuid_leaves[FEAT_7_0_EDX] & CPUID_EDX_STIBP);
}
static inline bool get_monitor_cap(void)
{
if (boot_cpu_data.cpuid_leaves[FEAT_1_ECX] & CPUID_ECX_MONITOR) {
/* don't use monitor for CPU (family: 0x6 model: 0x5c)
* in hypervisor, but still expose it to the guests and
* let them handle it correctly
*/
if (boot_cpu_data.x86 != 0x6 || boot_cpu_data.x86_model != 0x5c)
return true;
}
return false;
}
inline bool get_vmx_cap(void)
{
return !!(boot_cpu_data.cpuid_leaves[FEAT_1_ECX] & CPUID_ECX_VMX);
}
static uint64_t get_address_mask(uint8_t limit)
{
return ((1ULL << limit) - 1) & CPU_PAGE_MASK;
}
static void get_cpu_capabilities(void)
{
uint32_t eax, unused;
uint32_t max_extended_function_idx;
uint32_t family, model;
cpuid(CPUID_FEATURES, &eax, &unused,
&boot_cpu_data.cpuid_leaves[FEAT_1_ECX],
&boot_cpu_data.cpuid_leaves[FEAT_1_EDX]);
family = (eax >> 8) & 0xff;
if (family == 0xF)
family += (eax >> 20) & 0xff;
boot_cpu_data.x86 = family;
model = (eax >> 4) & 0xf;
if (family >= 0x06)
model += ((eax >> 16) & 0xf) << 4;
boot_cpu_data.x86_model = model;
cpuid(CPUID_EXTEND_FEATURE, &unused,
&boot_cpu_data.cpuid_leaves[FEAT_7_0_EBX],
&boot_cpu_data.cpuid_leaves[FEAT_7_0_ECX],
&boot_cpu_data.cpuid_leaves[FEAT_7_0_EDX]);
cpuid(CPUID_MAX_EXTENDED_FUNCTION,
&max_extended_function_idx,
&unused, &unused, &unused);
boot_cpu_data.cpuid_leaves[FEAT_8000_0000_EAX] =
max_extended_function_idx;
if (max_extended_function_idx < CPUID_EXTEND_ADDRESS_SIZE) {
panic("CPU w/o CPUID.80000008H is not supported");
}
cpuid(CPUID_EXTEND_FUNCTION_1, &unused, &unused,
&boot_cpu_data.cpuid_leaves[FEAT_8000_0001_ECX],
&boot_cpu_data.cpuid_leaves[FEAT_8000_0001_EDX]);
cpuid(CPUID_EXTEND_ADDRESS_SIZE,
&eax, &unused, &unused, &unused);
boot_cpu_data.cpuid_leaves[FEAT_8000_0008_EAX] = eax;
/* EAX bits 07-00: #Physical Address Bits
* bits 15-08: #Linear Address Bits
*/
boot_cpu_data.physical_address_mask =
get_address_mask(eax & 0xff);
/* For speculation defence.
* The default way is to set IBRS at vmexit and then do IBPB at vcpu
* context switch(ibrs_type == IBRS_RAW).
* Now provide an optimized way (ibrs_type == IBRS_OPT) which set
* STIBP and do IBPB at vmexit,since having STIBP always set has less
* impact than having IBRS always set. Also since IBPB is already done
* at vmexit, it is no necessary to do so at vcpu context switch then.
*/
ibrs_type = IBRS_NONE;
/* Currently for APL, if we enabled retpoline, then IBRS should not
* take effect
* TODO: add IA32_ARCH_CAPABILITIES[1] check, if this bit is set, IBRS
* should be set all the time instead of relying on retpoline
*/
#ifndef CONFIG_RETPOLINE
if (get_ibrs_ibpb_cap()) {
ibrs_type = IBRS_RAW;
if (get_stibp_cap())
ibrs_type = IBRS_OPT;
}
#endif
}
static void alloc_phy_cpu_data(int pcpu_num)
{
phy_cpu_num = pcpu_num;
per_cpu_data_base_ptr = calloc(1, PER_CPU_DATA_SIZE * pcpu_num);
ASSERT(per_cpu_data_base_ptr != NULL, "");
}
int __attribute__((weak)) parse_madt(uint8_t *lapic_id_base)
{
static const uint32_t lapic_id[] = {0, 2, 4, 6};
uint32_t i;
for (i = 0; i < ARRAY_SIZE(lapic_id); i++)
*lapic_id_base++ = lapic_id[i];
return ARRAY_SIZE(lapic_id);
}
static int init_phy_cpu_storage(void)
{
int i, pcpu_num = 0;
int bsp_cpu_id;
uint8_t bsp_lapic_id = 0;
uint8_t *lapic_id_base;
/*
* allocate memory to save all lapic_id detected in parse_mdt.
* We allocate 4K size which could save 4K CPUs lapic_id info.
*/
lapic_id_base = alloc_page();
ASSERT(lapic_id_base != NULL, "fail to alloc page");
pcpu_num = parse_madt(lapic_id_base);
alloc_phy_cpu_data(pcpu_num);
for (i = 0; i < pcpu_num; i++) {
per_cpu(lapic_id, i) = *lapic_id_base++;
#ifdef CONFIG_EFI_STUB
efi_physical_available_ap_bitmap |= 1 << per_cpu(lapic_id, i);
#endif
}
/* free memory after lapic_id are saved in per_cpu data */
free(lapic_id_base);
bsp_lapic_id = get_cur_lapic_id();
#ifdef CONFIG_EFI_STUB
efi_physical_available_ap_bitmap &= ~(1 << bsp_lapic_id);
#endif
bsp_cpu_id = cpu_find_logical_id(bsp_lapic_id);
ASSERT(bsp_cpu_id >= 0, "fail to get phy cpu id");
return bsp_cpu_id;
}
static void cpu_set_current_state(uint32_t logical_id, int state)
{
spinlock_obtain(&up_count_spinlock);
/* Check if state is initializing */
if (state == CPU_STATE_INITIALIZING) {
/* Increment CPU up count */
up_count++;
/* Save this CPU's logical ID to the TSC AUX MSR */
cpu_set_logical_id(logical_id);
}
/* Set state for the specified CPU */
per_cpu(state, logical_id) = state;
spinlock_release(&up_count_spinlock);
}
#ifdef STACK_PROTECTOR
struct stack_canary {
/* Gcc generates extra code, using [fs:40] to access canary */
uint8_t reserved[40];
uint64_t canary;
};
static DEFINE_CPU_DATA(struct stack_canary, stack_canary);
static uint64_t get_random_value(void)
{
uint64_t random = 0;
asm volatile ("1: rdrand %%rax\n"
"jnc 1b\n"
"mov %%rax, %0\n"
: "=r"(random) :: );
return random;
}
static void set_fs_base(void)
{
struct stack_canary *psc = &get_cpu_var(stack_canary);
psc->canary = get_random_value();
msr_write(MSR_IA32_FS_BASE, (uint64_t)psc);
}
#endif
static void get_cpu_name(void)
{
cpuid(CPUID_EXTEND_FUNCTION_2,
(uint32_t *)(boot_cpu_data.model_name),
(uint32_t *)(boot_cpu_data.model_name + 4),
(uint32_t *)(boot_cpu_data.model_name + 8),
(uint32_t *)(boot_cpu_data.model_name + 12));
cpuid(CPUID_EXTEND_FUNCTION_3,
(uint32_t *)(boot_cpu_data.model_name + 16),
(uint32_t *)(boot_cpu_data.model_name + 20),
(uint32_t *)(boot_cpu_data.model_name + 24),
(uint32_t *)(boot_cpu_data.model_name + 28));
cpuid(CPUID_EXTEND_FUNCTION_4,
(uint32_t *)(boot_cpu_data.model_name + 32),
(uint32_t *)(boot_cpu_data.model_name + 36),
(uint32_t *)(boot_cpu_data.model_name + 40),
(uint32_t *)(boot_cpu_data.model_name + 44));
boot_cpu_data.model_name[48] = '\0';
}
void bsp_boot_init(void)
{
uint64_t start_tsc = rdtsc();
/* Clear BSS */
memset(_ld_bss_start, 0, _ld_bss_end - _ld_bss_start);
/* Build time sanity checks to make sure hard-coded offset
* is matching the actual offset!
*/
_Static_assert(offsetof(struct cpu_regs, rax) ==
VMX_MACHINE_T_GUEST_RAX_OFFSET,
"cpu_regs rax offset not match");
_Static_assert(offsetof(struct cpu_regs, rbx) ==
VMX_MACHINE_T_GUEST_RBX_OFFSET,
"cpu_regs rbx offset not match");
_Static_assert(offsetof(struct cpu_regs, rcx) ==
VMX_MACHINE_T_GUEST_RCX_OFFSET,
"cpu_regs rcx offset not match");
_Static_assert(offsetof(struct cpu_regs, rdx) ==
VMX_MACHINE_T_GUEST_RDX_OFFSET,
"cpu_regs rdx offset not match");
_Static_assert(offsetof(struct cpu_regs, rbp) ==
VMX_MACHINE_T_GUEST_RBP_OFFSET,
"cpu_regs rbp offset not match");
_Static_assert(offsetof(struct cpu_regs, rsi) ==
VMX_MACHINE_T_GUEST_RSI_OFFSET,
"cpu_regs rsi offset not match");
_Static_assert(offsetof(struct cpu_regs, rdi) ==
VMX_MACHINE_T_GUEST_RDI_OFFSET,
"cpu_regs rdi offset not match");
_Static_assert(offsetof(struct cpu_regs, r8) ==
VMX_MACHINE_T_GUEST_R8_OFFSET,
"cpu_regs r8 offset not match");
_Static_assert(offsetof(struct cpu_regs, r9) ==
VMX_MACHINE_T_GUEST_R9_OFFSET,
"cpu_regs r9 offset not match");
_Static_assert(offsetof(struct cpu_regs, r10) ==
VMX_MACHINE_T_GUEST_R10_OFFSET,
"cpu_regs r10 offset not match");
_Static_assert(offsetof(struct cpu_regs, r11) ==
VMX_MACHINE_T_GUEST_R11_OFFSET,
"cpu_regs r11 offset not match");
_Static_assert(offsetof(struct cpu_regs, r12) ==
VMX_MACHINE_T_GUEST_R12_OFFSET,
"cpu_regs r12 offset not match");
_Static_assert(offsetof(struct cpu_regs, r13) ==
VMX_MACHINE_T_GUEST_R13_OFFSET,
"cpu_regs r13 offset not match");
_Static_assert(offsetof(struct cpu_regs, r14) ==
VMX_MACHINE_T_GUEST_R14_OFFSET,
"cpu_regs r14 offset not match");
_Static_assert(offsetof(struct cpu_regs, r15) ==
VMX_MACHINE_T_GUEST_R15_OFFSET,
"cpu_regs r15 offset not match");
_Static_assert(offsetof(struct run_context, cr2) ==
VMX_MACHINE_T_GUEST_CR2_OFFSET,
"run_context cr2 offset not match");
_Static_assert(offsetof(struct run_context, ia32_spec_ctrl) ==
VMX_MACHINE_T_GUEST_SPEC_CTRL_OFFSET,
"run_context ia32_spec_ctrl offset not match");
bitmap_set(CPU_BOOT_ID, &pcpu_active_bitmap);
/* Get CPU capabilities thru CPUID, including the physical address bit
* limit which is required for initializing paging.
*/
get_cpu_capabilities();
get_cpu_name();
load_cpu_state_data();
/* Initialize the hypervisor paging */
init_paging();
early_init_lapic();
init_phy_cpu_storage();
load_gdtr_and_tr();
/* Switch to run-time stack */
CPU_SP_WRITE(&get_cpu_var(stack)[STACK_SIZE - 1]);
#ifdef STACK_PROTECTOR
set_fs_base();
#endif
vapic_cap_detect();
cpu_xsave_init();
/* Set state for this CPU to initializing */
cpu_set_current_state(CPU_BOOT_ID, CPU_STATE_INITIALIZING);
/* Perform any necessary BSP initialization */
init_bsp();
/* Initialize Serial */
serial_init();
/* Initialize console */
console_init();
/* Print Hypervisor Banner */
print_hv_banner();
/* Make sure rdtsc is enabled */
check_tsc();
/* Calculate TSC Frequency */
tsc_clock_freq = tsc_cycles_in_period(1000) / 1000 * 1000000;
/* Enable logging */
init_logmsg(LOG_BUF_SIZE,
LOG_DESTINATION);
if (HV_RC_VERSION)
printf("HV version %d.%d-rc%d-%s-%s build by %s, start time %lluus\r\n",
HV_MAJOR_VERSION, HV_MINOR_VERSION, HV_RC_VERSION,
HV_BUILD_TIME, HV_BUILD_VERSION, HV_BUILD_USER,
TICKS_TO_US(start_tsc));
else
printf("HV version %d.%d-%s-%s build by %s, start time %lluus\r\n",
HV_MAJOR_VERSION, HV_MINOR_VERSION,
HV_BUILD_TIME, HV_BUILD_VERSION, HV_BUILD_USER,
TICKS_TO_US(start_tsc));
printf("API version %d.%d\r\n",
HV_API_MAJOR_VERSION, HV_API_MINOR_VERSION);
printf("Detect processor: %s\n", boot_cpu_data.model_name);
pr_dbg("Core %d is up", CPU_BOOT_ID);
/* Warn for security feature not ready */
if (!get_ibrs_ibpb_cap() && !get_stibp_cap()) {
pr_fatal("SECURITY WARNING!!!!!!");
pr_fatal("Please apply the latest CPU uCode patch!");
}
/* Initialize the shell */
shell_init();
/* Initialize interrupts */
interrupt_init(CPU_BOOT_ID);
timer_init();
setup_notification();
ptdev_init();
init_scheduler();
#ifndef CONFIG_EFI_STUB
/* Start all secondary cores */
start_cpus();
/* Trigger event to allow secondary CPUs to continue */
bitmap_set(0, &pcpu_sync);
#else
memcpy_s(_ld_cpu_secondary_reset_start,
(unsigned long)&_ld_cpu_secondary_reset_size,
_ld_cpu_secondary_reset_load,
(unsigned long)&_ld_cpu_secondary_reset_size);
#endif
ASSERT(get_cpu_id() == CPU_BOOT_ID, "");
init_iommu();
console_setup_timer();
/* Start initializing the VM for this CPU */
hv_main(CPU_BOOT_ID);
/* Control should not come here */
cpu_dead(CPU_BOOT_ID);
}
void cpu_secondary_init(void)
{
/* NOTE: Use of local / stack variables in this function is problematic
* since the stack is switched in the middle of the function. For this
* reason, the logical id is only temporarily stored in a static
* variable, but this will be over-written once subsequent CPUs
* start-up. Once the spin-lock is released, the cpu_logical_id_get()
* API is used to obtain the logical ID
*/
/* Switch this CPU to use the same page tables set-up by the
* primary/boot CPU
*/
enable_paging(get_paging_pml4());
early_init_lapic();
/* Find the logical ID of this CPU given the LAPIC ID
* temp_logical_id =
* cpu_find_logical_id(get_cur_lapic_id());
*/
cpu_find_logical_id(get_cur_lapic_id());
/* Set state for this CPU to initializing */
cpu_set_current_state(cpu_find_logical_id
(get_cur_lapic_id()),
CPU_STATE_INITIALIZING);
bitmap_set(get_cpu_id(), &pcpu_active_bitmap);
/* Switch to run-time stack */
CPU_SP_WRITE(&get_cpu_var(stack)[STACK_SIZE - 1]);
#ifdef STACK_PROTECTOR
set_fs_base();
#endif
load_gdtr_and_tr();
/* Make sure rdtsc is enabled */
check_tsc();
pr_dbg("Core %d is up", get_cpu_id());
cpu_xsave_init();
/* Release secondary boot spin-lock to allow one of the next CPU(s) to
* perform this common initialization
*/
spinlock_release(&cpu_secondary_spinlock);
/* Initialize secondary processor interrupts. */
interrupt_init(get_cpu_id());
timer_init();
/* Wait for boot processor to signal all secondary cores to continue */
pcpu_sync_sleep(&pcpu_sync, 0);
#ifdef CONFIG_EFI_STUB
bitmap_clr(0, &pcpu_sync);
#endif
hv_main(get_cpu_id());
/* Control will only come here for secondary CPUs not configured for
* use or if an error occurs in hv_main
*/
cpu_dead(get_cpu_id());
}
int cpu_find_logical_id(uint32_t lapic_id)
{
int i;
for (i = 0; i < phy_cpu_num; i++) {
if (per_cpu(lapic_id, i) == lapic_id)
return i;
}
return -1;
}
#ifndef CONFIG_EFI_STUB
/*
* Start all secondary CPUs.
*/
static void start_cpus()
{
uint32_t timeout;
uint32_t expected_up;
/*Copy segment for AP initialization code below 1MB */
memcpy_s(_ld_cpu_secondary_reset_start,
(unsigned long)&_ld_cpu_secondary_reset_size,
_ld_cpu_secondary_reset_load,
(unsigned long)&_ld_cpu_secondary_reset_size);
/* Set flag showing number of CPUs expected to be up to all
* cpus
*/
expected_up = phy_cpu_num;
/* Broadcast IPIs to all other CPUs */
send_startup_ipi(INTR_CPU_STARTUP_ALL_EX_SELF,
-1U, ((uint64_t) cpu_secondary_reset));
/* Wait until global count is equal to expected CPU up count or
* configured time-out has expired
*/
timeout = CPU_UP_TIMEOUT * 1000;
while ((up_count != expected_up) && (timeout != 0)) {
/* Delay 10us */
udelay(10);
/* Decrement timeout value */
timeout -= 10;
}
/* Check to see if all expected CPUs are actually up */
if (up_count != expected_up) {
/* Print error */
pr_fatal("Secondary CPUs failed to come up");
/* Error condition - loop endlessly for now */
do {
} while (1);
}
}
#endif
void cpu_dead(uint32_t logical_id)
{
/* For debug purposes, using a stack variable in the while loop enables
* us to modify the value using a JTAG probe and resume if needed.
*/
int halt = 1;
/* Set state to show CPU is halted */
cpu_set_current_state(logical_id, CPU_STATE_HALTED);
bitmap_clr(get_cpu_id(), &pcpu_active_bitmap);
/* Halt the CPU */
do {
asm volatile ("hlt");
} while (halt);
}
static void cpu_set_logical_id(uint32_t logical_id)
{
/* Write TSC AUX register */
msr_write(MSR_IA32_TSC_AUX, (uint64_t) logical_id);
}
static void print_hv_banner(void)
{
char *boot_msg = "ACRN Hypervisor\n\r";
/* Print the boot message */
printf(boot_msg);
}
static void pcpu_sync_sleep(unsigned long *sync, int mask_bit)
{
int wake_sync = (1 << mask_bit);
if (get_monitor_cap()) {
/* Wait for the event to be set using monitor/mwait */
asm volatile ("1: cmpl %%ebx,(%%eax)\n"
" je 2f\n"
" monitor\n"
" mwait\n"
" jmp 1b\n"
"2:\n"
:
: "a" (sync), "d"(0), "c"(0),
"b"(wake_sync)
: "cc");
} else {
/* Wait for the event to be set using pause */
asm volatile ("1: cmpl %%ebx,(%%eax)\n"
" je 2f\n"
" pause\n"
" jmp 1b\n"
"2:\n"
:
: "a" (sync), "d"(0), "c"(0),
"b"(wake_sync)
: "cc");
}
}
/*check allowed ONEs setting in vmx control*/
static bool is_ctrl_setting_allowed(uint64_t msr_val, uint32_t ctrl)
{
/*
* Intel SDM Appendix A.3
* - bitX in ctrl can be set 1
* only if bit 32+X in msr_val is 1
*/
return ((((uint32_t)(msr_val >> 32)) & ctrl) == ctrl);
}
static void vapic_cap_detect(void)
{
uint8_t features;
uint64_t msr_val;
features = 0;
msr_val = msr_read(MSR_IA32_VMX_PROCBASED_CTLS);
if (!is_ctrl_setting_allowed(msr_val, VMX_PROCBASED_CTLS_TPR_SHADOW)) {
cpu_caps.vapic_features = 0;
return;
}
features |= VAPIC_FEATURE_TPR_SHADOW;
msr_val = msr_read(MSR_IA32_VMX_PROCBASED_CTLS2);
if (!is_ctrl_setting_allowed(msr_val, VMX_PROCBASED_CTLS2_VAPIC)) {
cpu_caps.vapic_features = features;
return;
}
features |= VAPIC_FEATURE_VIRT_ACCESS;
if (is_ctrl_setting_allowed(msr_val, VMX_PROCBASED_CTLS2_VAPIC_REGS))
features |= VAPIC_FEATURE_VIRT_REG;
if (is_ctrl_setting_allowed(msr_val, VMX_PROCBASED_CTLS2_VX2APIC))
features |= VAPIC_FEATURE_VX2APIC_MODE;
if (is_ctrl_setting_allowed(msr_val, VMX_PROCBASED_CTLS2_VIRQ)) {
features |= VAPIC_FEATURE_INTR_DELIVERY;
msr_val = msr_read(MSR_IA32_VMX_PINBASED_CTLS);
if (is_ctrl_setting_allowed(msr_val,
VMX_PINBASED_CTLS_POST_IRQ))
features |= VAPIC_FEATURE_POST_INTR;
}
cpu_caps.vapic_features = features;
}
bool is_vapic_supported(void)
{
return ((cpu_caps.vapic_features & VAPIC_FEATURE_VIRT_ACCESS) != 0);
}
bool is_vapic_intr_delivery_supported(void)
{
return ((cpu_caps.vapic_features & VAPIC_FEATURE_INTR_DELIVERY) != 0);
}
bool is_vapic_virt_reg_supported(void)
{
return ((cpu_caps.vapic_features & VAPIC_FEATURE_VIRT_REG) != 0);
}
bool is_xsave_supported(void)
{
/*
*todo:
*below flag also should be tested, but current it will be false
*as it is not updated after turning on the host's CR4.OSXSAVE bit,
*will be fixed in cpuid related patch.
*boot_cpu_data.cpuid_leaves[FEAT_1_ECX] & CPUID_ECX_OSXSAVE
**/
return !!(boot_cpu_data.cpuid_leaves[FEAT_1_ECX] & CPUID_ECX_XSAVE);
}
static void cpu_xsave_init(void)
{
uint64_t val64;
if (is_xsave_supported()) {
CPU_CR_READ(cr4, &val64);
val64 |= CR4_OSXSAVE;
CPU_CR_WRITE(cr4, val64);
}
}