Currently the sched event handling may encounter data race problem, and
as a result some vcpus might be stalled forever.
One example can be wbinvd handling where more than 1 vcpus are doing
wbinvd concurrently. The following is a possible execution of 3 vcpus:
-------
0 1 2
req [Note: 0]
req bit0 set [Note: 1]
IPI -> 0
req bit2 set
IPI -> 2
VMExit
req bit2 cleared
wait
vcpu2 descheduled
VMExit
req bit0 cleared
wait
vcpu0 descheduled
signal 0
event0->set=true
wake 0
signal 2
event2->set=true [Note: 3]
wake 2
vcpu2 scheduled
event2->set=false
resume
req
req bit0 set
IPI -> 0
req bit1 set
IPI -> 1
(doesn't matter)
vcpu0 scheduled [Note: 4]
signal 0
event0->set=true
(no wake) [Note: 2]
event0->set=false (the rest doesn't matter)
resume
Any VMExit
req bit0 cleared
wait
idle running
(blocked forever)
Notes:
0: req: vcpu_make_request(vcpu, ACRN_REQUEST_WAIT_WBINVD).
1: req bit: Bit in pending_req_bits. Bit0 stands for bit for vcpu0.
2: In function signal_event, At this time the event->waiting_thread
is not NULL, so wake_thread will not execute
3: eventX: struct sched_event of vcpuX.
4: In function wait_event, the lock does not strictly cover the execution between
schedule() and event->set=false, so other threads may kick in.
-----
As shown in above example, before the last random VMExit, vcpu0 ended up
with request bit set but event->set==false, so blocked forever.
This patch proposes to change event->set from a boolean variable to an
integer. The semantic is very similar to a semaphore. The wait_event
will add 1 to this value, and block when this value is > 0, whereas signal_event
will decrease this value by 1.
It may happen that this value was decreased to a negative number but that
is OK. As long as the wait_event and signal_event are paired and
program order is observed (that is, wait_event always happens-before signal_event
on a single vcpu), this value will eventually be 0.
Tracked-On: #6405
Signed-off-by: Yifan Liu <yifan1.liu@intel.com>