acrn-hypervisor/hypervisor/arch/x86/cpu.c

591 lines
13 KiB
C

/*
* Copyright (C) 2018 Intel Corporation. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <types.h>
#include <bits.h>
#include <page.h>
#include <e820.h>
#include <mmu.h>
#include <vtd.h>
#include <lapic.h>
#include <per_cpu.h>
#include <cpufeatures.h>
#include <cpu_caps.h>
#include <acpi.h>
#include <ioapic.h>
#include <trampoline.h>
#include <cpuid.h>
#include <version.h>
#include <vmx.h>
#include <msr.h>
#include <ptdev.h>
#include <logmsg.h>
#include <rdt.h>
#include <vboot.h>
#include <sgx.h>
#include <uart16550.h>
#define CPU_UP_TIMEOUT 100U /* millisecond */
#define CPU_DOWN_TIMEOUT 100U /* millisecond */
struct per_cpu_region per_cpu_data[MAX_PCPU_NUM] __aligned(PAGE_SIZE);
static uint16_t phys_cpu_num = 0U;
static uint64_t pcpu_sync = 0UL;
static uint64_t startup_paddr = 0UL;
/* physical cpu active bitmap, support up to 64 cpus */
static volatile uint64_t pcpu_active_bitmap = 0UL;
static void init_pcpu_xsave(void);
static void set_current_pcpu_id(uint16_t pcpu_id);
static void print_hv_banner(void);
static uint16_t get_pcpu_id_from_lapic_id(uint32_t lapic_id);
static uint64_t start_tsc __attribute__((__section__(".bss_noinit")));
/**
* @pre phys_cpu_num <= MAX_PCPU_NUM
*/
static bool init_percpu_lapic_id(void)
{
uint16_t i;
uint32_t lapic_id_array[MAX_PCPU_NUM];
bool success = false;
/* Save all lapic_id detected via parse_mdt in lapic_id_array */
phys_cpu_num = parse_madt(lapic_id_array);
if ((phys_cpu_num != 0U) && (phys_cpu_num <= MAX_PCPU_NUM)) {
for (i = 0U; i < phys_cpu_num; i++) {
per_cpu(lapic_id, i) = lapic_id_array[i];
}
success = true;
}
return success;
}
static void pcpu_set_current_state(uint16_t pcpu_id, enum pcpu_boot_state state)
{
/* Check if state is initializing */
if (state == PCPU_STATE_INITIALIZING) {
/* Save this CPU's logical ID to the TSC AUX MSR */
set_current_pcpu_id(pcpu_id);
}
/* Set state for the specified CPU */
per_cpu(boot_state, pcpu_id) = state;
}
/*
* @post return <= MAX_PCPU_NUM
*/
uint16_t get_pcpu_nums(void)
{
return phys_cpu_num;
}
bool is_pcpu_active(uint16_t pcpu_id)
{
return bitmap_test(pcpu_id, &pcpu_active_bitmap);
}
uint64_t get_active_pcpu_bitmap(void)
{
return pcpu_active_bitmap;
}
static void enable_ac_for_splitlock(void)
{
#ifndef CONFIG_ENFORCE_TURNOFF_AC
uint64_t test_ctl;
if (has_core_cap(1U << 5U)) {
test_ctl = msr_read(MSR_TEST_CTL);
test_ctl |= (1U << 29U);
msr_write(MSR_TEST_CTL, test_ctl);
}
#endif /*CONFIG_ENFORCE_TURNOFF_AC*/
}
void init_pcpu_pre(bool is_bsp)
{
uint16_t pcpu_id;
int32_t ret;
if (is_bsp) {
pcpu_id = BSP_CPU_ID;
start_tsc = rdtsc();
/* Get CPU capabilities thru CPUID, including the physical address bit
* limit which is required for initializing paging.
*/
init_pcpu_capabilities();
if (detect_hardware_support() != 0) {
panic("hardware not support!");
}
if (sanitize_multiboot_info() != 0) {
panic("Multiboot info error!");
}
init_pcpu_model_name();
load_pcpu_state_data();
/* Initialize the hypervisor paging */
init_e820();
init_paging();
/*
* Need update uart_base_address here for vaddr2paddr mapping may changed
* WARNNING: DO NOT CALL PRINTF BETWEEN ENABLE PAGING IN init_paging AND HERE!
*/
uart16550_init(false);
early_init_lapic();
init_vboot();
#ifdef CONFIG_ACPI_PARSE_ENABLED
ret = acpi_fixup();
if (ret != 0) {
panic("failed to parse/fix up ACPI table!");
}
#endif
if (!init_percpu_lapic_id()) {
panic("failed to init_percpu_lapic_id!");
}
ret = init_ioapic_id_info();
if (ret != 0) {
panic("System IOAPIC info is incorrect!");
}
#ifdef CONFIG_RDT_ENABLED
init_rdt_info();
#endif
/* NOTE: this must call after MMCONFIG is parsed in init_vboot and before APs are INIT.
* We only support platform with MMIO based CFG space access.
* IO port access only support in debug version.
*/
pci_switch_to_mmio_cfg_ops();
} else {
/* Switch this CPU to use the same page tables set-up by the
* primary/boot CPU
*/
enable_paging();
early_init_lapic();
pcpu_id = get_pcpu_id_from_lapic_id(get_cur_lapic_id());
if (pcpu_id >= MAX_PCPU_NUM) {
panic("Invalid pCPU ID!");
}
}
bitmap_set_lock(pcpu_id, &pcpu_active_bitmap);
/* Set state for this CPU to initializing */
pcpu_set_current_state(pcpu_id, PCPU_STATE_INITIALIZING);
}
void init_pcpu_post(uint16_t pcpu_id)
{
#ifdef STACK_PROTECTOR
set_fs_base();
#endif
load_gdtr_and_tr();
enable_ac_for_splitlock();
init_pcpu_xsave();
if (pcpu_id == BSP_CPU_ID) {
/* Print Hypervisor Banner */
print_hv_banner();
/* Calibrate TSC Frequency */
calibrate_tsc();
pr_acrnlog("HV version %s-%s-%s %s (daily tag:%s) %s@%s build by %s%s, start time %luus",
HV_FULL_VERSION,
HV_BUILD_TIME, HV_BUILD_VERSION, HV_BUILD_TYPE,
HV_DAILY_TAG, HV_BUILD_SCENARIO, HV_BUILD_BOARD,
HV_BUILD_USER, HV_CONFIG_TOOL, ticks_to_us(start_tsc));
pr_acrnlog("API version %u.%u", HV_API_MAJOR_VERSION, HV_API_MINOR_VERSION);
pr_acrnlog("Detect processor: %s", (get_pcpu_info())->model_name);
pr_dbg("Core %hu is up", BSP_CPU_ID);
if (!sanitize_vm_config()) {
panic("VM Configuration Error!");
}
/* Warn for security feature not ready */
if (!check_cpu_security_cap()) {
pr_fatal("SECURITY WARNING!!!!!!");
pr_fatal("Please apply the latest CPU uCode patch!");
}
/* Initialize interrupts */
init_interrupt(BSP_CPU_ID);
timer_init();
setup_notification();
setup_pi_notification();
if (init_iommu() != 0) {
panic("failed to initialize iommu!");
}
hv_access_memory_region_update(get_mmcfg_base(), PCI_MMCONFIG_SIZE);
init_pci_pdev_list(); /* init_iommu must come before this */
ptdev_init();
if (init_sgx() != 0) {
panic("failed to initialize sgx!");
}
/*
* Reserve memory from platform E820 for EPT 4K pages for all VMs
*/
#ifdef CONFIG_LAST_LEVEL_EPT_AT_BOOT
reserve_buffer_for_ept_pages();
#endif
/* Start all secondary cores */
startup_paddr = prepare_trampoline();
if (!start_pcpus(AP_MASK)) {
panic("Failed to start all secondary cores!");
}
ASSERT(get_pcpu_id() == BSP_CPU_ID, "");
} else {
pr_dbg("Core %hu is up", pcpu_id);
/* Initialize secondary processor interrupts. */
init_interrupt(pcpu_id);
timer_init();
ptdev_init();
/* Wait for boot processor to signal all secondary cores to continue */
wait_sync_change(&pcpu_sync, 0UL);
}
init_sched(pcpu_id);
#ifdef CONFIG_RDT_ENABLED
setup_clos(pcpu_id);
#endif
enable_smep();
enable_smap();
}
static uint16_t get_pcpu_id_from_lapic_id(uint32_t lapic_id)
{
uint16_t i;
uint16_t pcpu_id = INVALID_CPU_ID;
for (i = 0U; i < phys_cpu_num; i++) {
if (per_cpu(lapic_id, i) == lapic_id) {
pcpu_id = i;
break;
}
}
return pcpu_id;
}
static void start_pcpu(uint16_t pcpu_id)
{
uint32_t timeout;
/* Update the stack for pcpu */
stac();
write_trampoline_stack_sym(pcpu_id);
clac();
send_startup_ipi(pcpu_id, startup_paddr);
/* Wait until the pcpu with pcpu_id is running and set the active bitmap or
* configured time-out has expired
*/
timeout = CPU_UP_TIMEOUT * 1000U;
while (!is_pcpu_active(pcpu_id) && (timeout != 0U)) {
/* Delay 10us */
udelay(10U);
/* Decrement timeout value */
timeout -= 10U;
}
/* Check to see if expected CPU is actually up */
if (!is_pcpu_active(pcpu_id)) {
pr_fatal("Secondary CPU%hu failed to come up", pcpu_id);
pcpu_set_current_state(pcpu_id, PCPU_STATE_DEAD);
}
}
/**
* @brief Start all cpus if the bit is set in mask except itself
*
* @param[in] mask bits mask of cpus which should be started
*
* @return true if all cpus set in mask are started
* @return false if there are any cpus set in mask aren't started
*/
bool start_pcpus(uint64_t mask)
{
uint16_t i;
uint16_t pcpu_id = get_pcpu_id();
uint64_t expected_start_mask = mask;
/* secondary cpu start up will wait for pcpu_sync -> 0UL */
pcpu_sync = 1UL;
cpu_write_memory_barrier();
i = ffs64(expected_start_mask);
while (i != INVALID_BIT_INDEX) {
bitmap_clear_nolock(i, &expected_start_mask);
if (pcpu_id == i) {
continue; /* Avoid start itself */
}
start_pcpu(i);
i = ffs64(expected_start_mask);
}
/* Trigger event to allow secondary CPUs to continue */
pcpu_sync = 0UL;
return ((pcpu_active_bitmap & mask) == mask);
}
void make_pcpu_offline(uint16_t pcpu_id)
{
bitmap_set_lock(NEED_OFFLINE, &per_cpu(pcpu_flag, pcpu_id));
if (get_pcpu_id() != pcpu_id) {
send_single_ipi(pcpu_id, NOTIFY_VCPU_VECTOR);
}
}
bool need_offline(uint16_t pcpu_id)
{
return bitmap_test_and_clear_lock(NEED_OFFLINE, &per_cpu(pcpu_flag, pcpu_id));
}
void wait_pcpus_offline(uint64_t mask)
{
uint32_t timeout;
timeout = CPU_DOWN_TIMEOUT * 1000U;
while (((pcpu_active_bitmap & mask) != 0UL) && (timeout != 0U)) {
udelay(10U);
timeout -= 10U;
}
}
void stop_pcpus(void)
{
uint16_t pcpu_id;
uint64_t mask = 0UL;
for (pcpu_id = 0U; pcpu_id < phys_cpu_num; pcpu_id++) {
if (get_pcpu_id() == pcpu_id) { /* avoid offline itself */
continue;
}
bitmap_set_nolock(pcpu_id, &mask);
make_pcpu_offline(pcpu_id);
}
/**
* Timeout never occurs here:
* If target cpu received a NMI and panic, it has called cpu_dead and make_pcpu_offline success.
* If target cpu is running, an IPI will be delivered to it and then call cpu_dead.
*/
wait_pcpus_offline(mask);
}
void cpu_do_idle(void)
{
asm_pause();
}
/**
* only run on current pcpu
*/
void cpu_dead(void)
{
/* For debug purposes, using a stack variable in the while loop enables
* us to modify the value using a JTAG probe and resume if needed.
*/
int32_t halt = 1;
uint16_t pcpu_id = get_pcpu_id();
deinit_sched(pcpu_id);
if (bitmap_test(pcpu_id, &pcpu_active_bitmap)) {
/* clean up native stuff */
vmx_off();
cache_flush_invalidate_all();
/* Set state to show CPU is dead */
pcpu_set_current_state(pcpu_id, PCPU_STATE_DEAD);
bitmap_clear_lock(pcpu_id, &pcpu_active_bitmap);
/* Halt the CPU */
do {
asm_hlt();
} while (halt != 0);
} else {
pr_err("pcpu%hu already dead", pcpu_id);
}
}
static void set_current_pcpu_id(uint16_t pcpu_id)
{
/* Write TSC AUX register */
msr_write(MSR_IA32_TSC_AUX, (uint64_t) pcpu_id);
}
static void print_hv_banner(void)
{
const char *boot_msg = "ACRN Hypervisor\n\r";
/* Print the boot message */
printf(boot_msg);
}
static
inline void asm_monitor(volatile const uint64_t *addr, uint64_t ecx, uint64_t edx)
{
asm volatile("monitor\n" : : "a" (addr), "c" (ecx), "d" (edx));
}
static
inline void asm_mwait(uint64_t eax, uint64_t ecx)
{
asm volatile("mwait\n" : : "a" (eax), "c" (ecx));
}
/* wait until *sync == wake_sync */
void wait_sync_change(volatile const uint64_t *sync, uint64_t wake_sync)
{
if (has_monitor_cap()) {
/* Wait for the event to be set using monitor/mwait */
while ((*sync) != wake_sync) {
asm_monitor(sync, 0UL, 0UL);
if ((*sync) != wake_sync) {
asm_mwait(0UL, 0UL);
}
}
} else {
while ((*sync) != wake_sync) {
asm_pause();
}
}
}
static void init_pcpu_xsave(void)
{
uint64_t val64;
struct cpuinfo_x86 *cpu_info;
uint64_t xcr0, xss;
uint32_t eax, ecx, unused, xsave_area_size;
CPU_CR_READ(cr4, &val64);
val64 |= CR4_OSXSAVE;
CPU_CR_WRITE(cr4, val64);
if (get_pcpu_id() == BSP_CPU_ID) {
cpuid_subleaf(CPUID_FEATURES, 0x0U, &unused, &unused, &ecx, &unused);
/* if set, update it */
if ((ecx & CPUID_ECX_OSXSAVE) != 0U) {
cpu_info = get_pcpu_info();
cpu_info->cpuid_leaves[FEAT_1_ECX] |= CPUID_ECX_OSXSAVE;
/* set xcr0 and xss with the componets bitmap get from cpuid */
xcr0 = ((uint64_t)cpu_info->cpuid_leaves[FEAT_D_0_EDX] << 32U)
+ cpu_info->cpuid_leaves[FEAT_D_0_EAX];
xss = ((uint64_t)cpu_info->cpuid_leaves[FEAT_D_1_EDX] << 32U)
+ cpu_info->cpuid_leaves[FEAT_D_1_ECX];
write_xcr(0, xcr0);
msr_write(MSR_IA32_XSS, xss);
/* get xsave area size, containing all the state components
* corresponding to bits currently set in XCR0 | IA32_XSS */
cpuid_subleaf(CPUID_XSAVE_FEATURES, 1U,
&eax,
&xsave_area_size,
&ecx,
&unused);
if (xsave_area_size > XSAVE_STATE_AREA_SIZE) {
panic("XSAVE area (%d bytes) exceeds the pre-allocated 4K region\n",
xsave_area_size);
}
}
}
}
static void smpcall_write_msr_func(void *data)
{
struct msr_data_struct *msr = (struct msr_data_struct *)data;
msr_write(msr->msr_index, msr->write_val);
}
void msr_write_pcpu(uint32_t msr_index, uint64_t value64, uint16_t pcpu_id)
{
struct msr_data_struct msr = {0};
uint64_t mask = 0UL;
if (pcpu_id == get_pcpu_id()) {
msr_write(msr_index, value64);
} else {
msr.msr_index = msr_index;
msr.write_val = value64;
bitmap_set_nolock(pcpu_id, &mask);
smp_call_function(mask, smpcall_write_msr_func, &msr);
}
}
static void smpcall_read_msr_func(void *data)
{
struct msr_data_struct *msr = (struct msr_data_struct *)data;
msr->read_val = msr_read(msr->msr_index);
}
uint64_t msr_read_pcpu(uint32_t msr_index, uint16_t pcpu_id)
{
struct msr_data_struct msr = {0};
uint64_t mask = 0UL;
uint64_t ret = 0;
if (pcpu_id == get_pcpu_id()) {
ret = msr_read(msr_index);
} else {
msr.msr_index = msr_index;
bitmap_set_nolock(pcpu_id, &mask);
smp_call_function(mask, smpcall_read_msr_func, &msr);
ret = msr.read_val;
}
return ret;
}