acrn-hypervisor/hypervisor/arch/x86/guest/guest.c

511 lines
13 KiB
C

/*
* Copyright (C) 2018 Intel Corporation. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <hypervisor.h>
#include <bsp_extern.h>
#include <multiboot.h>
#include <reloc.h>
#include <e820.h>
#define ACRN_DBG_GUEST 6U
struct page_walk_info {
uint64_t top_entry; /* Top level paging structure entry */
uint32_t level;
uint32_t width;
bool is_user_mode_access;
bool is_write_access;
bool is_inst_fetch;
bool pse; /* CR4.PSE for 32bit paing,
* true for PAE/4-level paing */
bool wp; /* CR0.WP */
bool nxe; /* MSR_IA32_EFER_NXE_BIT */
bool is_smap_on;
bool is_smep_on;
};
uint64_t vcpumask2pcpumask(struct acrn_vm *vm, uint64_t vdmask)
{
uint16_t vcpu_id;
uint64_t dmask = 0UL;
struct acrn_vcpu *vcpu;
for (vcpu_id = 0U; vcpu_id < vm->hw.created_vcpus; vcpu_id++) {
if ((vdmask & (1UL << vcpu_id)) != 0UL) {
vcpu = vcpu_from_vid(vm, vcpu_id);
bitmap_set_lock(vcpu->pcpu_id, &dmask);
}
}
return dmask;
}
enum vm_paging_mode get_vcpu_paging_mode(struct acrn_vcpu *vcpu)
{
enum vm_cpu_mode cpu_mode;
cpu_mode = get_vcpu_mode(vcpu);
if (cpu_mode == CPU_MODE_REAL) {
return PAGING_MODE_0_LEVEL;
}
else if (cpu_mode == CPU_MODE_PROTECTED) {
if (is_pae(vcpu)) {
return PAGING_MODE_3_LEVEL;
}
else if (is_paging_enabled(vcpu)) {
return PAGING_MODE_2_LEVEL;
}
return PAGING_MODE_0_LEVEL;
} else { /* compatibility or 64bit mode */
return PAGING_MODE_4_LEVEL;
}
}
/* TODO: Add code to check for Revserved bits, SMAP and PKE when do translation
* during page walk */
static int32_t local_gva2gpa_common(struct acrn_vcpu *vcpu, const struct page_walk_info *pw_info,
uint64_t gva, uint64_t *gpa, uint32_t *err_code)
{
uint32_t i;
uint64_t index;
uint32_t shift;
void *base;
uint64_t entry;
uint64_t addr, page_size;
int32_t ret = 0;
int32_t fault = 0;
bool is_user_mode_addr = true;
bool is_page_rw_flags_on = true;
if (pw_info->level < 1U) {
return -EINVAL;
}
addr = pw_info->top_entry;
i = pw_info->level;
stac();
while (i != 0U) {
i--;
addr = addr & IA32E_REF_MASK;
base = gpa2hva(vcpu->vm, addr);
if (base == NULL) {
ret = -EFAULT;
goto out;
}
shift = (i * pw_info->width) + 12U;
index = (gva >> shift) & ((1UL << pw_info->width) - 1UL);
page_size = 1UL << shift;
if (pw_info->width == 10U) {
uint32_t *base32 = (uint32_t *)base;
/* 32bit entry */
entry = (uint64_t)(*(base32 + index));
} else {
uint64_t *base64 = (uint64_t *)base;
entry = *(base64 + index);
}
/* check if the entry present */
if ((entry & PAGE_PRESENT) == 0U) {
ret = -EFAULT;
goto out;
}
/* check for R/W */
if ((entry & PAGE_RW) == 0U) {
if (pw_info->is_write_access) {
/* Case1: Supermode and wp is 1
* Case2: Usermode */
if (pw_info->is_user_mode_access ||
pw_info->wp) {
fault = 1;
goto out;
}
}
is_page_rw_flags_on = false;
}
/* check for nx, since for 32-bit paing, the XD bit is
* reserved(0), use the same logic as PAE/4-level paging */
if (pw_info->is_inst_fetch && pw_info->nxe &&
((entry & PAGE_NX) != 0U)) {
fault = 1;
goto out;
}
/* check for U/S */
if ((entry & PAGE_USER) == 0U) {
is_user_mode_addr = false;
if (pw_info->is_user_mode_access) {
fault = 1;
goto out;
}
}
if (pw_info->pse && ((i > 0U) && ((entry & PAGE_PSE) != 0U))) {
break;
}
addr = entry;
}
/* When SMAP/SMEP is on, we only need to apply check when address is
* user-mode address.
* Also SMAP/SMEP only impact the supervisor-mode access.
*/
/* if smap is enabled and supervisor-mode access */
if (pw_info->is_smap_on && !pw_info->is_user_mode_access &&
is_user_mode_addr) {
bool rflags_ac = ((vcpu_get_rflags(vcpu) & RFLAGS_AC) != 0UL);
/* read from user mode address, eflags.ac = 0 */
if (!pw_info->is_write_access && !rflags_ac) {
fault = 1;
goto out;
}
/* write to user mode address */
if (pw_info->is_write_access) {
/* cr0.wp = 0, eflags.ac = 0 */
if (!pw_info->wp && !rflags_ac) {
fault = 1;
goto out;
}
/* cr0.wp = 1, eflags.ac = 1, r/w flag is 0
* on any paging structure entry
*/
if (pw_info->wp && rflags_ac && !is_page_rw_flags_on) {
fault = 1;
goto out;
}
/* cr0.wp = 1, eflags.ac = 0 */
if (pw_info->wp && !rflags_ac) {
fault = 1;
goto out;
}
}
}
/* instruction fetch from user-mode address, smep on */
if (pw_info->is_smep_on && !pw_info->is_user_mode_access &&
is_user_mode_addr && pw_info->is_inst_fetch) {
fault = 1;
goto out;
}
entry >>= shift;
/* shift left 12bit more and back to clear XD/Prot Key/Ignored bits */
entry <<= (shift + 12U);
entry >>= 12U;
*gpa = entry | (gva & (page_size - 1UL));
out:
clac();
if (fault != 0) {
ret = -EFAULT;
*err_code |= PAGE_FAULT_P_FLAG;
}
return ret;
}
static int32_t local_gva2gpa_pae(struct acrn_vcpu *vcpu, struct page_walk_info *pw_info,
uint64_t gva, uint64_t *gpa, uint32_t *err_code)
{
int32_t index;
uint64_t *base;
uint64_t entry;
uint64_t addr;
int32_t ret;
addr = pw_info->top_entry & 0xFFFFFFF0U;
base = (uint64_t *)gpa2hva(vcpu->vm, addr);
if (base == NULL) {
ret = -EFAULT;
goto out;
}
index = (gva >> 30U) & 0x3UL;
entry = base[index];
if ((entry & PAGE_PRESENT) == 0U) {
ret = -EFAULT;
goto out;
}
pw_info->level = 2U;
pw_info->top_entry = entry;
ret = local_gva2gpa_common(vcpu, pw_info, gva, gpa, err_code);
out:
return ret;
}
/* Refer to SDM Vol.3A 6-39 section 6.15 for the format of paging fault error
* code.
*
* Caller should set the contect of err_code properly according to the address
* usage when calling this function:
* - If it is an address for write, set PAGE_FAULT_WR_FLAG in err_code.
* - If it is an address for instruction featch, set PAGE_FAULT_ID_FLAG in
* err_code.
* Caller should check the return value to confirm if the function success or
* not.
* If a protection volation detected during page walk, this function still will
* give the gpa translated, it is up to caller to decide if it need to inject a
* #PF or not.
* - Return 0 for success.
* - Return -EINVAL for invalid parameter.
* - Return -EFAULT for paging fault, and refer to err_code for paging fault
* error code.
*/
int32_t gva2gpa(struct acrn_vcpu *vcpu, uint64_t gva, uint64_t *gpa,
uint32_t *err_code)
{
enum vm_paging_mode pm = get_vcpu_paging_mode(vcpu);
struct page_walk_info pw_info;
int32_t ret = 0;
if ((gpa == NULL) || (err_code == NULL)) {
return -EINVAL;
}
*gpa = 0UL;
pw_info.top_entry = exec_vmread(VMX_GUEST_CR3);
pw_info.level = (uint32_t)pm;
pw_info.is_write_access = ((*err_code & PAGE_FAULT_WR_FLAG) != 0U);
pw_info.is_inst_fetch = ((*err_code & PAGE_FAULT_ID_FLAG) != 0U);
/* SDM vol3 27.3.2
* If the segment register was unusable, the base, select and some
* bits of access rights are undefined. With the exception of
* DPL of SS
* and others.
* So we use DPL of SS access rights field for guest DPL.
*/
pw_info.is_user_mode_access =
(((exec_vmread32(VMX_GUEST_SS_ATTR) >> 5U) & 0x3U) == 3U);
pw_info.pse = true;
pw_info.nxe = ((vcpu_get_efer(vcpu) & MSR_IA32_EFER_NXE_BIT) != 0UL);
pw_info.wp = ((vcpu_get_cr0(vcpu) & CR0_WP) != 0UL);
pw_info.is_smap_on = ((vcpu_get_cr4(vcpu) & CR4_SMAP) != 0UL);
pw_info.is_smep_on = ((vcpu_get_cr4(vcpu) & CR4_SMEP) != 0UL);
*err_code &= ~PAGE_FAULT_P_FLAG;
if (pm == PAGING_MODE_4_LEVEL) {
pw_info.width = 9U;
ret = local_gva2gpa_common(vcpu, &pw_info, gva, gpa, err_code);
} else if (pm == PAGING_MODE_3_LEVEL) {
pw_info.width = 9U;
ret = local_gva2gpa_pae(vcpu, &pw_info, gva, gpa, err_code);
} else if (pm == PAGING_MODE_2_LEVEL) {
pw_info.width = 10U;
pw_info.pse = ((vcpu_get_cr4(vcpu) & CR4_PSE) != 0UL);
pw_info.nxe = false;
ret = local_gva2gpa_common(vcpu, &pw_info, gva, gpa, err_code);
} else {
*gpa = gva;
}
if (ret == -EFAULT) {
if (pw_info.is_user_mode_access) {
*err_code |= PAGE_FAULT_US_FLAG;
}
}
return ret;
}
static inline uint32_t local_copy_gpa(struct acrn_vm *vm, void *h_ptr, uint64_t gpa,
uint32_t size, uint32_t fix_pg_size, bool cp_from_vm)
{
uint64_t hpa;
uint32_t offset_in_pg, len, pg_size;
void *g_ptr;
hpa = local_gpa2hpa(vm, gpa, &pg_size);
if (hpa == INVALID_HPA) {
pr_err("%s,vm[%hu] gpa 0x%llx,GPA is unmapping",
__func__, vm->vm_id, gpa);
return 0U;
}
if (fix_pg_size != 0U) {
pg_size = fix_pg_size;
}
offset_in_pg = (uint32_t)gpa & (pg_size - 1U);
len = (size > (pg_size - offset_in_pg)) ?
(pg_size - offset_in_pg) : size;
g_ptr = hpa2hva(hpa);
stac();
if (cp_from_vm) {
(void)memcpy_s(h_ptr, len, g_ptr, len);
} else {
(void)memcpy_s(g_ptr, len, h_ptr, len);
}
clac();
return len;
}
static inline int32_t copy_gpa(struct acrn_vm *vm, void *h_ptr_arg, uint64_t gpa_arg,
uint32_t size_arg, bool cp_from_vm)
{
void *h_ptr = h_ptr_arg;
uint32_t len;
uint64_t gpa = gpa_arg;
uint32_t size = size_arg;
while (size > 0U) {
len = local_copy_gpa(vm, h_ptr, gpa, size, 0U, cp_from_vm);
if (len == 0U) {
return -EINVAL;
}
gpa += len;
h_ptr += len;
size -= len;
}
return 0;
}
/*
* @pre vcpu != NULL && err_code != NULL
*/
static inline int32_t copy_gva(struct acrn_vcpu *vcpu, void *h_ptr_arg, uint64_t gva_arg,
uint32_t size_arg, uint32_t *err_code, uint64_t *fault_addr,
bool cp_from_vm)
{
void *h_ptr = h_ptr_arg;
uint64_t gpa = 0UL;
int32_t ret;
uint32_t len;
uint64_t gva = gva_arg;
uint32_t size = size_arg;
while (size > 0U) {
ret = gva2gpa(vcpu, gva, &gpa, err_code);
if (ret < 0) {
*fault_addr = gva;
pr_err("error[%d] in GVA2GPA, err_code=0x%x",
ret, *err_code);
return ret;
}
len = local_copy_gpa(vcpu->vm, h_ptr, gpa, size,
PAGE_SIZE_4K, cp_from_vm);
if (len == 0U) {
return -EINVAL;
}
gva += len;
h_ptr += len;
size -= len;
}
return 0;
}
/* @pre Caller(Guest) should make sure gpa is continuous.
* - gpa from hypercall input which from kernel stack is gpa continuous, not
* support kernel stack from vmap
* - some other gpa from hypercall parameters, VHM should make sure it's
* continuous
* @pre Pointer vm is non-NULL
*/
int32_t copy_from_gpa(struct acrn_vm *vm, void *h_ptr, uint64_t gpa, uint32_t size)
{
return copy_gpa(vm, h_ptr, gpa, size, 1);
}
/* @pre Caller(Guest) should make sure gpa is continuous.
* - gpa from hypercall input which from kernel stack is gpa continuous, not
* support kernel stack from vmap
* - some other gpa from hypercall parameters, VHM should make sure it's
* continuous
* @pre Pointer vm is non-NULL
*/
int32_t copy_to_gpa(struct acrn_vm *vm, void *h_ptr, uint64_t gpa, uint32_t size)
{
return copy_gpa(vm, h_ptr, gpa, size, 0);
}
int32_t copy_from_gva(struct acrn_vcpu *vcpu, void *h_ptr, uint64_t gva,
uint32_t size, uint32_t *err_code, uint64_t *fault_addr)
{
return copy_gva(vcpu, h_ptr, gva, size, err_code, fault_addr, 1);
}
int32_t copy_to_gva(struct acrn_vcpu *vcpu, void *h_ptr, uint64_t gva,
uint32_t size, uint32_t *err_code, uint64_t *fault_addr)
{
return copy_gva(vcpu, h_ptr, gva, size, err_code, fault_addr, 0);
}
/**
* @param[inout] vm pointer to a vm descriptor
*
* @retval 0 on success
*
* @pre vm != NULL
* @pre is_vm0(vm) == true
*/
void prepare_vm0_memmap(struct acrn_vm *vm)
{
uint32_t i;
uint64_t attr_uc = (EPT_RWX | EPT_UNCACHED);
uint64_t hv_hpa;
uint64_t *pml4_page = (uint64_t *)vm->arch_vm.nworld_eptp;
const struct e820_entry *entry;
uint32_t entries_count = get_e820_entries_count();
const struct e820_entry *p_e820 = get_e820_entry();
const struct e820_mem_params *p_e820_mem_info = get_e820_mem_info();
dev_dbg(ACRN_DBG_GUEST, "vm0: bottom memory - 0x%llx, top memory - 0x%llx\n",
p_e820_mem_info->mem_bottom, p_e820_mem_info->mem_top);
if (p_e820_mem_info->mem_top > EPT_ADDRESS_SPACE(CONFIG_SOS_RAM_SIZE)) {
panic("Please configure VM0_ADDRESS_SPACE correctly!\n");
}
/* create real ept map for all ranges with UC */
ept_mr_add(vm, pml4_page, p_e820_mem_info->mem_bottom, p_e820_mem_info->mem_bottom,
(p_e820_mem_info->mem_top - p_e820_mem_info->mem_bottom), attr_uc);
/* update ram entries to WB attr */
for (i = 0U; i < entries_count; i++) {
entry = p_e820 + i;
if (entry->type == E820_TYPE_RAM) {
ept_mr_modify(vm, pml4_page, entry->baseaddr, entry->length, EPT_WB, EPT_MT_MASK);
}
}
dev_dbg(ACRN_DBG_GUEST, "VM0 e820 layout:\n");
for (i = 0U; i < entries_count; i++) {
entry = p_e820 + i;
dev_dbg(ACRN_DBG_GUEST, "e820 table: %d type: 0x%x", i, entry->type);
dev_dbg(ACRN_DBG_GUEST, "BaseAddress: 0x%016llx length: 0x%016llx\n",
entry->baseaddr, entry->length);
}
/* unmap hypervisor itself for safety
* will cause EPT violation if sos accesses hv memory
*/
hv_hpa = get_hv_image_base();
ept_mr_del(vm, pml4_page, hv_hpa, CONFIG_HV_RAM_SIZE);
}