acrn-hypervisor/hypervisor/hw/pci.c

421 lines
10 KiB
C

/*
* Copyright (c) 1997, Stefan Esser <se@freebsd.org>
* Copyright (c) 2000, Michael Smith <msmith@freebsd.org>
* Copyright (c) 2011 NetApp, Inc.
* Copyright (c) 2018 Intel Corporation
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#include <hypervisor.h>
#include <uart16550.h>
#include <pci.h>
static spinlock_t pci_device_lock;
static uint32_t num_pci_pdev;
static struct pci_pdev pci_pdev_array[CONFIG_MAX_PCI_DEV_NUM];
static void init_pdev(uint16_t pbdf);
static uint32_t pci_pdev_calc_address(union pci_bdf bdf, uint32_t offset)
{
uint32_t addr = (uint32_t)bdf.value;
addr <<= 8U;
addr |= (offset | PCI_CFG_ENABLE);
return addr;
}
uint32_t pci_pdev_read_cfg(union pci_bdf bdf, uint32_t offset, uint32_t bytes)
{
uint32_t addr;
uint32_t val;
addr = pci_pdev_calc_address(bdf, offset);
spinlock_obtain(&pci_device_lock);
/* Write address to ADDRESS register */
pio_write32(addr, (uint16_t)PCI_CONFIG_ADDR);
/* Read result from DATA register */
switch (bytes) {
case 1U:
val = (uint32_t)pio_read8((uint16_t)PCI_CONFIG_DATA + ((uint16_t)offset & 3U));
break;
case 2U:
val = (uint32_t)pio_read16((uint16_t)PCI_CONFIG_DATA + ((uint16_t)offset & 2U));
break;
default:
val = pio_read32((uint16_t)PCI_CONFIG_DATA);
break;
}
spinlock_release(&pci_device_lock);
return val;
}
void pci_pdev_write_cfg(union pci_bdf bdf, uint32_t offset, uint32_t bytes, uint32_t val)
{
uint32_t addr;
spinlock_obtain(&pci_device_lock);
addr = pci_pdev_calc_address(bdf, offset);
/* Write address to ADDRESS register */
pio_write32(addr, (uint16_t)PCI_CONFIG_ADDR);
/* Write value to DATA register */
switch (bytes) {
case 1U:
pio_write8((uint8_t)val, (uint16_t)PCI_CONFIG_DATA + ((uint16_t)offset & 3U));
break;
case 2U:
pio_write16((uint16_t)val, (uint16_t)PCI_CONFIG_DATA + ((uint16_t)offset & 2U));
break;
default:
pio_write32(val, (uint16_t)PCI_CONFIG_DATA);
break;
}
spinlock_release(&pci_device_lock);
}
/* enable: 1: enable INTx; 0: Disable INTx */
void enable_disable_pci_intx(union pci_bdf bdf, bool enable)
{
uint32_t cmd, new_cmd;
/* Set or clear the INTXDIS bit in COMMAND register */
cmd = pci_pdev_read_cfg(bdf, PCIR_COMMAND, 2U);
if (enable) {
new_cmd = cmd & ~PCIM_CMD_INTxDIS;
} else {
new_cmd = cmd | PCIM_CMD_INTxDIS;
}
if ((cmd ^ new_cmd) != 0U) {
pci_pdev_write_cfg(bdf, PCIR_COMMAND, 0x2U, new_cmd);
}
}
#define BUS_SCAN_SKIP 0U
#define BUS_SCAN_PENDING 1U
#define BUS_SCAN_COMPLETE 2U
void init_pci_pdev_list(void)
{
union pci_bdf pbdf;
uint8_t hdr_type, secondary_bus, dev, func;
uint32_t bus, val;
uint8_t bus_to_scan[PCI_BUSMAX + 1] = { BUS_SCAN_SKIP };
/* start from bus 0 */
bus_to_scan[0U] = BUS_SCAN_PENDING;
for (bus = 0U; bus <= PCI_BUSMAX; bus++) {
if (bus_to_scan[bus] != BUS_SCAN_PENDING) {
continue;
}
bus_to_scan[bus] = BUS_SCAN_COMPLETE;
pbdf.bits.b = (uint8_t)bus;
for (dev = 0U; dev <= PCI_SLOTMAX; dev++) {
pbdf.bits.d = dev;
for (func = 0U; func <= PCI_FUNCMAX; func++) {
pbdf.bits.f = func;
val = pci_pdev_read_cfg(pbdf, PCIR_VENDOR, 4U);
if ((val == 0xFFFFFFFFU) || (val == 0U) || (val == 0xFFFF0000U) || (val == 0xFFFFU)) {
/* If function 0 is not implemented, skip to next device */
if (func == 0U) {
break;
}
/* continue scan next function */
continue;
}
/* if it is debug uart, hide it from SOS */
if (is_pci_dbg_uart(pbdf)) {
pr_info("hide pci uart dev: (%x:%x:%x)", pbdf.bits.b, pbdf.bits.d, pbdf.bits.f);
continue;
}
init_pdev(pbdf.value);
hdr_type = (uint8_t)pci_pdev_read_cfg(pbdf, PCIR_HDRTYPE, 1U);
if ((hdr_type & PCIM_HDRTYPE) == PCIM_HDRTYPE_BRIDGE) {
/* Secondary bus to be scanned */
secondary_bus = (uint8_t)pci_pdev_read_cfg(pbdf, PCIR_SECBUS_1, 1U);
if (bus_to_scan[secondary_bus] != BUS_SCAN_SKIP) {
pr_err("%s, bus %d may be downstream of different PCI bridges",
secondary_bus);
} else {
bus_to_scan[secondary_bus] = BUS_SCAN_PENDING;
}
}
}
}
}
}
static uint8_t pci_pdev_get_num_bars(uint8_t hdr_type)
{
uint8_t num_bars = (uint8_t)0U;
switch (hdr_type & PCIM_HDRTYPE) {
case PCIM_HDRTYPE_NORMAL:
num_bars = (uint8_t)6U;
break;
case PCIM_HDRTYPE_BRIDGE:
num_bars = (uint8_t)2U;
break;
case PCIM_HDRTYPE_CARDBUS:
num_bars = (uint8_t)1U;
break;
default:
/*no actions are required for other cases.*/
break;
}
return num_bars;
}
static enum pci_bar_type pci_pdev_read_bar_type(union pci_bdf bdf, uint8_t idx)
{
uint32_t bar;
enum pci_bar_type type = PCIBAR_NONE;
bar = pci_pdev_read_cfg(bdf, pci_bar_offset(idx), 4U);
if ((bar & PCIM_BAR_SPACE) == PCIM_BAR_IO_SPACE) {
type = PCIBAR_IO_SPACE;
} else {
switch (bar & PCIM_BAR_MEM_TYPE) {
case PCIM_BAR_MEM_32:
case PCIM_BAR_MEM_1MB:
type = PCIBAR_MEM32;
break;
case PCIM_BAR_MEM_64:
type = PCIBAR_MEM64;
break;
default:
/*no actions are required for other cases.*/
break;
}
}
return type;
}
static uint8_t pci_pdev_read_bar(union pci_bdf bdf, uint8_t idx, struct pci_bar *bar)
{
uint64_t base, size;
enum pci_bar_type type;
uint32_t bar_lo, bar_hi, val32;
uint32_t bar_base_mask;
base = 0UL;
size = 0UL;
type = pci_pdev_read_bar_type(bdf, idx);
bar_hi = 0U;
if (type != PCIBAR_NONE) {
if (type == PCIBAR_IO_SPACE) {
bar_base_mask = ~0x03U;
} else {
bar_base_mask = ~0x0fU;
}
bar_lo = pci_pdev_read_cfg(bdf, pci_bar_offset(idx), 4U);
/* Get the base address */
base = (uint64_t)bar_lo & bar_base_mask;
if (type == PCIBAR_MEM64) {
bar_hi = pci_pdev_read_cfg(bdf, pci_bar_offset(idx + 1U), 4U);
base |= ((uint64_t)bar_hi << 32U);
}
if (base != 0UL) {
/* Sizing the BAR */
if ((type == PCIBAR_MEM64) && (idx < (PCI_BAR_COUNT - 1U))) {
pci_pdev_write_cfg(bdf, pci_bar_offset(idx + 1U), 4U, ~0U);
size = (uint64_t)pci_pdev_read_cfg(bdf, pci_bar_offset(idx + 1U), 4U);
size <<= 32U;
}
pci_pdev_write_cfg(bdf, pci_bar_offset(idx), 4U, ~0U);
val32 = pci_pdev_read_cfg(bdf, pci_bar_offset(idx), 4U);
size |= ((uint64_t)val32 & bar_base_mask);
if (size != 0UL) {
size = size & ~(size - 1U);
}
/* Restore the BAR */
pci_pdev_write_cfg(bdf, pci_bar_offset(idx), 4U, bar_lo);
if (type == PCIBAR_MEM64) {
pci_pdev_write_cfg(bdf, pci_bar_offset(idx + 1U), 4U, bar_hi);
}
}
}
bar->base = base;
bar->size = size;
bar->type = type;
return (type == PCIBAR_MEM64)?2U:1U;
}
/*
* @pre nr_bars <= PCI_BAR_COUNT
*/
static void pci_pdev_read_bars(union pci_bdf bdf, uint8_t nr_bars, struct pci_bar *bar)
{
uint8_t idx = 0U;
while (idx < nr_bars) {
idx += pci_pdev_read_bar(bdf, idx, &bar[idx]);
}
}
static void pci_read_cap(struct pci_pdev *pdev)
{
uint8_t ptr, cap;
uint32_t msgctrl;
uint32_t len, offset, idx;
uint32_t table_info;
ptr = (uint8_t)pci_pdev_read_cfg(pdev->bdf, PCIR_CAP_PTR, 1U);
while ((ptr != 0U) && (ptr != 0xFFU)) {
cap = (uint8_t)pci_pdev_read_cfg(pdev->bdf, ptr + PCICAP_ID, 1U);
/* Ignore all other Capability IDs for now */
if ((cap == PCIY_MSI) || (cap == PCIY_MSIX)) {
offset = ptr;
if (cap == PCIY_MSI) {
pdev->msi.capoff = offset;
msgctrl = pci_pdev_read_cfg(pdev->bdf, offset + PCIR_MSI_CTRL, 2U);
len = ((msgctrl & PCIM_MSICTRL_64BIT) != 0U) ? 14U : 10U;
pdev->msi.caplen = len;
/* Copy MSI capability struct into buffer */
for (idx = 0U; idx < len; idx++) {
pdev->msi.cap[idx] = (uint8_t)pci_pdev_read_cfg(pdev->bdf, offset + idx, 1U);
}
} else {
pdev->msix.capoff = offset;
pdev->msix.caplen = MSIX_CAPLEN;
len = pdev->msix.caplen;
msgctrl = pci_pdev_read_cfg(pdev->bdf, pdev->msix.capoff + PCIR_MSIX_CTRL, 2U);
/* Read Table Offset and Table BIR */
table_info = pci_pdev_read_cfg(pdev->bdf, pdev->msix.capoff + PCIR_MSIX_TABLE, 4U);
pdev->msix.table_bar = (uint8_t)(table_info & PCIM_MSIX_BIR_MASK);
pdev->msix.table_offset = table_info & ~PCIM_MSIX_BIR_MASK;
pdev->msix.table_count = (msgctrl & PCIM_MSIXCTRL_TABLE_SIZE) + 1U;
ASSERT(pdev->msix.table_count <= CONFIG_MAX_MSIX_TABLE_NUM);
/* Copy MSIX capability struct into buffer */
for (idx = 0U; idx < len; idx++) {
pdev->msix.cap[idx] = (uint8_t)pci_pdev_read_cfg(pdev->bdf, offset + idx, 1U);
}
}
}
ptr = (uint8_t)pci_pdev_read_cfg(pdev->bdf, ptr + PCICAP_NEXTPTR, 1U);
}
}
static void fill_pdev(uint16_t pbdf, struct pci_pdev *pdev)
{
uint8_t hdr_type;
uint8_t nr_bars;
pdev->bdf.value = pbdf;
hdr_type = (uint8_t)pci_pdev_read_cfg(pdev->bdf, PCIR_HDRTYPE, 1U);
nr_bars = pci_pdev_get_num_bars(hdr_type);
pci_pdev_read_bars(pdev->bdf, nr_bars, &pdev->bar[0]);
if ((pci_pdev_read_cfg(pdev->bdf, PCIR_STATUS, 2U) & PCIM_STATUS_CAPPRESENT) != 0U) {
pci_read_cap(pdev);
}
}
static void init_pdev(uint16_t pbdf)
{
if (num_pci_pdev < CONFIG_MAX_PCI_DEV_NUM) {
fill_pdev(pbdf, &pci_pdev_array[num_pci_pdev]);
num_pci_pdev++;
} else {
pr_err("%s, failed to alloc pci_pdev!\n", __func__);
}
}
void pci_pdev_foreach(pci_pdev_enumeration_cb cb_func, const void *ctx)
{
uint32_t idx;
for (idx = 0U; idx < num_pci_pdev; idx++) {
if (cb_func != NULL) {
cb_func(&pci_pdev_array[idx], ctx);
}
}
}
struct pci_pdev *find_pci_pdev(union pci_bdf pbdf)
{
struct pci_pdev *pdev = NULL;
uint32_t i;
for (i = 0U; i < num_pci_pdev; i++) {
if (bdf_is_equal(&pci_pdev_array[i].bdf, &pbdf)) {
pdev = &pci_pdev_array[i];
break;
}
}
return pdev;
}