acrn-hypervisor/hypervisor/include/arch/x86/asm/vtd.h

729 lines
17 KiB
C

/*
* Copyright (C) 2018 Intel Corporation.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef VTD_H
#define VTD_H
#include <types.h>
#include <pci.h>
#include <platform_acpi_info.h>
#define INVALID_DRHD_INDEX 0xFFFFFFFFU
#define INVALID_IRTE_ID 0xFFFFU
/*
* Intel IOMMU register specification per version 1.0 public spec.
*/
#define DMAR_VER_REG 0x0U /* Arch version supported by this IOMMU */
#define DMAR_CAP_REG 0x8U /* Hardware supported capabilities */
#define DMAR_ECAP_REG 0x10U /* Extended capabilities supported */
#define DMAR_GCMD_REG 0x18U /* Global command register */
#define DMAR_GSTS_REG 0x1cU /* Global status register */
#define DMAR_RTADDR_REG 0x20U /* Root entry table */
#define DMAR_CCMD_REG 0x28U /* Context command reg */
#define DMAR_FSTS_REG 0x34U /* Fault Status register */
#define DMAR_FECTL_REG 0x38U /* Fault control register */
#define DMAR_FEDATA_REG 0x3cU /* Fault event interrupt data register */
#define DMAR_FEADDR_REG 0x40U /* Fault event interrupt addr register */
#define DMAR_FEUADDR_REG 0x44U /* Upper address register */
#define DMAR_AFLOG_REG 0x58U /* Advanced Fault control */
#define DMAR_PMEN_REG 0x64U /* Enable Protected Memory Region */
#define DMAR_PLMBASE_REG 0x68U /* PMRR Low addr */
#define DMAR_PLMLIMIT_REG 0x6cU /* PMRR low limit */
#define DMAR_PHMBASE_REG 0x70U /* pmrr high base addr */
#define DMAR_PHMLIMIT_REG 0x78U /* pmrr high limit */
#define DMAR_IQH_REG 0x80U /* Invalidation queue head register */
#define DMAR_IQT_REG 0x88U /* Invalidation queue tail register */
#define DMAR_IQ_SHIFT 4 /* Invalidation queue head/tail shift */
#define DMAR_IQA_REG 0x90U /* Invalidation queue addr register */
#define DMAR_ICS_REG 0x9cU /* Invalidation complete status register */
#define DMAR_IRTA_REG 0xb8U /* Interrupt remapping table addr register */
/* Values for entry_type in ACPI_DMAR_DEVICE_SCOPE - device types */
enum acpi_dmar_scope_type {
ACPI_DMAR_SCOPE_TYPE_NOT_USED = 0,
ACPI_DMAR_SCOPE_TYPE_ENDPOINT = 1,
ACPI_DMAR_SCOPE_TYPE_BRIDGE = 2,
ACPI_DMAR_SCOPE_TYPE_IOAPIC = 3,
ACPI_DMAR_SCOPE_TYPE_HPET = 4,
ACPI_DMAR_SCOPE_TYPE_NAMESPACE = 5,
ACPI_DMAR_SCOPE_TYPE_RESERVED = 6 /* 6 and greater are reserved */
};
struct iommu_domain {
uint16_t vm_id;
uint32_t addr_width; /* address width of the domain */
uint64_t trans_table_ptr;
};
union source {
uint16_t ioapic_id;
union pci_bdf msi;
};
struct intr_source {
bool is_msi;
union source src;
/*
* pid_paddr = 0: invalid address, indicate that remapped mode shall be used
*
* pid_paddr != 0: physical address of posted interrupt descriptor, indicate
* that posted mode shall be used
*/
uint64_t pid_paddr;
};
static inline uint8_t dmar_ver_major(uint64_t version)
{
return (((uint8_t)version & 0xf0U) >> 4U);
}
static inline uint8_t dmar_ver_minor(uint64_t version)
{
return ((uint8_t)version & 0x0fU);
}
/*
* Decoding Capability Register
*/
static inline uint8_t iommu_cap_pi(uint64_t cap)
{
return ((uint8_t)(cap >> 59U) & 1U);
}
static inline uint8_t iommu_cap_read_drain(uint64_t cap)
{
return ((uint8_t)(cap >> 55U) & 1U);
}
static inline uint8_t iommu_cap_write_drain(uint64_t cap)
{
return ((uint8_t)(cap >> 54U) & 1U);
}
static inline uint8_t iommu_cap_max_amask_val(uint64_t cap)
{
return ((uint8_t)(cap >> 48U) & 0x3fU);
}
static inline uint16_t iommu_cap_num_fault_regs(uint64_t cap)
{
return (((uint16_t)(cap >> 40U) & 0xffU) + 1U);
}
static inline uint8_t iommu_cap_pgsel_inv(uint64_t cap)
{
return ((uint8_t)(cap >> 39U) & 1U);
}
static inline uint8_t iommu_cap_super_page_val(uint64_t cap)
{
return ((uint8_t)(cap >> 34U) & 0xfU);
}
static inline uint16_t iommu_cap_fault_reg_offset(uint64_t cap)
{
return (((uint16_t)(cap >> 24U) & 0x3ffU) * 16U);
}
static inline uint16_t iommu_cap_max_fault_reg_offset(uint64_t cap)
{
return (iommu_cap_fault_reg_offset(cap) +
(iommu_cap_num_fault_regs(cap) * 16U));
}
static inline uint8_t iommu_cap_zlr(uint64_t cap)
{
return ((uint8_t)(cap >> 22U) & 1U);
}
static inline uint8_t iommu_cap_isoch(uint64_t cap)
{
return ((uint8_t)(cap >> 23U) & 1U);
}
static inline uint8_t iommu_cap_mgaw(uint64_t cap)
{
return (((uint8_t)(cap >> 16U) & 0x3fU) + 1U);
}
static inline uint8_t iommu_cap_sagaw(uint64_t cap)
{
return ((uint8_t)(cap >> 8U) & 0x1fU);
}
static inline uint8_t iommu_cap_caching_mode(uint64_t cap)
{
return ((uint8_t)(cap >> 7U) & 1U);
}
static inline uint8_t iommu_cap_phmr(uint64_t cap)
{
return ((uint8_t)(cap >> 6U) & 1U);
}
static inline uint8_t iommu_cap_plmr(uint64_t cap)
{
return ((uint8_t)(cap >> 5U) & 1U);
}
static inline uint8_t iommu_cap_afl(uint64_t cap)
{
return ((uint8_t)(cap >> 3U) & 1U);
}
static inline uint32_t iommu_cap_ndoms(uint64_t cap)
{
return ((1U) << (4U + (2U * ((uint8_t)cap & 0x7U))));
}
/*
* Decoding Extended Capability Register
*/
static inline uint8_t iommu_ecap_c(uint64_t ecap)
{
return ((uint8_t)(ecap >> 0U) & 1U);
}
static inline uint8_t iommu_ecap_qi(uint64_t ecap)
{
return ((uint8_t)(ecap >> 1U) & 1U);
}
static inline uint8_t iommu_ecap_dt(uint64_t ecap)
{
return ((uint8_t)(ecap >> 2U) & 1U);
}
static inline uint8_t iommu_ecap_ir(uint64_t ecap)
{
return ((uint8_t)(ecap >> 3U) & 1U);
}
static inline uint8_t iommu_ecap_eim(uint64_t ecap)
{
return ((uint8_t)(ecap >> 4U) & 1U);
}
static inline uint8_t iommu_ecap_pt(uint64_t ecap)
{
return ((uint8_t)(ecap >> 6U) & 1U);
}
static inline uint16_t iommu_ecap_iro(uint64_t ecap)
{
return ((uint16_t)(ecap >> 8U) & 0x3ffU);
}
static inline uint8_t iommu_ecap_mhmv(uint64_t ecap)
{
return ((uint8_t)(ecap >> 20U) & 0xfU);
}
static inline uint8_t iommu_ecap_ecs(uint64_t ecap)
{
return ((uint8_t)(ecap >> 24U) & 1U);
}
static inline uint8_t iommu_ecap_mts(uint64_t ecap)
{
return ((uint8_t)(ecap >> 25U) & 1U);
}
static inline uint8_t iommu_ecap_nest(uint64_t ecap)
{
return ((uint8_t)(ecap >> 26U) & 1U);
}
static inline uint8_t iommu_ecap_dis(uint64_t ecap)
{
return ((uint8_t)(ecap >> 27U) & 1U);
}
static inline uint8_t iommu_ecap_prs(uint64_t ecap)
{
return ((uint8_t)(ecap >> 29U) & 1U);
}
static inline uint8_t iommu_ecap_ers(uint64_t ecap)
{
return ((uint8_t)(ecap >> 30U) & 1U);
}
static inline uint8_t iommu_ecap_srs(uint64_t ecap)
{
return ((uint8_t)(ecap >> 31U) & 1U);
}
static inline uint8_t iommu_ecap_nwfs(uint64_t ecap)
{
return ((uint8_t)(ecap >> 33U) & 1U);
}
static inline uint8_t iommu_ecap_eafs(uint64_t ecap)
{
return ((uint8_t)(ecap >> 34U) & 1U);
}
static inline uint8_t iommu_ecap_pss(uint64_t ecap)
{
return ((uint8_t)(ecap >> 35U) & 0x1fU);
}
static inline uint8_t iommu_ecap_pasid(uint64_t ecap)
{
return ((uint8_t)(ecap >> 40U) & 1U);
}
static inline uint8_t iommu_ecap_dit(uint64_t ecap)
{
return ((uint8_t)(ecap >> 41U) & 1U);
}
static inline uint8_t iommu_ecap_pds(uint64_t ecap)
{
return ((uint8_t)(ecap >> 42U) & 1U);
}
/* PMEN_REG */
#define DMA_PMEN_EPM (1U << 31U)
#define DMA_PMEN_PRS (1U << 0U)
/* GCMD_REG */
#define DMA_GCMD_TE (1U << 31U)
#define DMA_GCMD_SRTP (1U << 30U)
#define DMA_GCMD_SFL (1U << 29U)
#define DMA_GCMD_EAFL (1U << 28U)
#define DMA_GCMD_WBF (1U << 27U)
#define DMA_GCMD_QIE (1U << 26U)
#define DMA_GCMD_SIRTP (1U << 24U)
#define DMA_GCMD_IRE (1U << 25U)
#define DMA_GCMD_CFI (1U << 23U)
/* GSTS_REG */
#define DMA_GSTS_TES (1U << 31U)
#define DMA_GSTS_RTPS (1U << 30U)
#define DMA_GSTS_FLS (1U << 29U)
#define DMA_GSTS_AFLS (1U << 28U)
#define DMA_GSTS_WBFS (1U << 27U)
#define DMA_GSTS_QIES (1U << 26U)
#define DMA_GSTS_IRTPS (1U << 24U)
#define DMA_GSTS_IRES (1U << 25U)
#define DMA_GSTS_CFIS (1U << 23U)
/* CCMD_REG */
#define DMA_CONTEXT_GLOBAL_INVL (1UL << 4U)
#define DMA_CONTEXT_DOMAIN_INVL (2UL << 4U)
#define DMA_CONTEXT_DEVICE_INVL (3UL << 4U)
static inline uint64_t dma_ccmd_fm(uint8_t fm)
{
return (((uint64_t)fm & 0x3UL) << 48UL);
}
#define DMA_CCMD_MASK_NOBIT 0UL
#define DMA_CCMD_MASK_1BIT 1UL
#define DMA_CCMD_MASK_2BIT 2UL
#define DMA_CCMD_MASK_3BIT 3UL
static inline uint64_t dma_ccmd_sid(uint16_t sid)
{
return (((uint64_t)sid & 0xffffUL) << 32UL);
}
static inline uint64_t dma_ccmd_did(uint16_t did)
{
return (((uint64_t)did & 0xffffUL) << 16UL);
}
static inline uint8_t dma_ccmd_get_caig_32(uint32_t gaig)
{
return ((uint8_t)(gaig >> 27U) & 0x3U);
}
/* IOTLB_REG */
#define DMA_IOTLB_IVT (((uint64_t)1UL) << 63U)
#define DMA_IOTLB_IVT_32 (((uint32_t)1U) << 31U)
#define DMA_IOTLB_GLOBAL_INVL (((uint64_t)1UL) << 4U)
#define DMA_IOTLB_DOMAIN_INVL (((uint64_t)2UL) << 4U)
#define DMA_IOTLB_PAGE_INVL (((uint64_t)3UL) << 4U)
#define DMA_IOTLB_DR (((uint64_t)1UL) << 7U)
#define DMA_IOTLB_DW (((uint64_t)1UL) << 6U)
static inline uint64_t dma_iotlb_did(uint16_t did)
{
return (((uint64_t)did & 0xffffUL) << 16UL);
}
static inline uint8_t dma_iotlb_get_iaig_32(uint32_t iai)
{
return ((uint8_t)(iai >> 25U) & 0x3U);
}
/* INVALIDATE_ADDRESS_REG */
static inline uint8_t dma_iotlb_invl_addr_am(uint8_t am)
{
return (am & 0x3fU);
}
/* IEC_REG */
#define DMAR_IECI_INDEXED (((uint64_t)1UL) << 4U)
#define DMAR_IEC_GLOBAL_INVL (((uint64_t)0UL) << 4U)
static inline uint64_t dma_iec_index(uint16_t index, uint8_t index_mask)
{
return ((((uint64_t)index & 0xFFFFU) << 32U) | (((uint64_t)index_mask & 0x1FU) << 27U));
}
#define DMA_IOTLB_INVL_ADDR_IH_UNMODIFIED (((uint64_t)1UL) << 6U)
/* FECTL_REG */
#define DMA_FECTL_IM (((uint32_t)1U) << 31U)
/* FSTS_REG */
static inline bool dma_fsts_pfo(uint32_t pfo)
{
return (((pfo >> 0U) & 1U) == 1U);
}
static inline bool dma_fsts_ppf(uint32_t ppf)
{
return (((ppf >> 1U) & 1U) == 1U);
}
static inline bool dma_fsts_afo(uint32_t afo)
{
return (((afo >> 2U) & 1U) == 1U);
}
static inline bool dma_fsts_apf(uint32_t apf)
{
return (((apf >> 3U) & 1U) == 1U);
}
static inline bool dma_fsts_iqe(uint32_t iqe)
{
return (((iqe >> 4U) & 1U) == 1U);
}
static inline bool dma_fsts_ice(uint32_t ice)
{
return (((ice >> 5U) & 1U) == 1U);
}
static inline bool dma_fsts_ite(uint32_t ite)
{
return (((ite >> 6U) & 1U) == 1U);
}
static inline bool dma_fsts_pro(uint32_t pro)
{
return (((pro >> 7U) & 1U) == 1U);
}
static inline uint8_t dma_fsts_fri(uint32_t fri)
{
return ((uint8_t)(fri >> 8U) & 0xFFU);
}
/* FRCD_REGs: upper 64 bits*/
static inline bool dma_frcd_up_f(uint64_t up_f)
{
return (((up_f >> 63U) & 1UL) == 1UL);
}
static inline uint8_t dma_frcd_up_t(uint64_t up_t)
{
return ((uint8_t)(up_t >> 62U) & 1U);
}
static inline uint8_t dma_frcd_up_at(uint64_t up_at)
{
return ((uint8_t)(up_at >> 60U) & 3U);
}
static inline uint32_t dma_frcd_up_pasid(uint64_t up_pasid)
{
return ((uint32_t)(up_pasid >> 40U) & 0xfffffU);
}
static inline uint8_t dma_frcd_up_fr(uint64_t up_fr)
{
return ((uint8_t)(up_fr >> 32U) & 0xffU);
}
static inline bool dma_frcd_up_pp(uint64_t up_pp)
{
return (((up_pp >> 31U) & 1UL) == 1UL);
}
static inline bool dma_frcd_up_exe(uint64_t up_exe)
{
return (((up_exe >> 30U) & 1UL) == 1UL);
}
static inline bool dma_frcd_up_priv(uint64_t up_priv)
{
return (((up_priv >> 29U) & 1UL) == 1UL);
}
static inline uint16_t dma_frcd_up_sid(uint64_t up_sid)
{
return ((uint16_t)up_sid & 0xffffU);
}
#define MAX_DRHDS DRHD_COUNT
#define MAX_DRHD_DEVSCOPES 16U
#define DMAR_CONTEXT_TRANSLATION_TYPE_TRANSLATED 0x00U
#define DMAR_CONTEXT_TRANSLATION_TYPE_RESERVED 0x01U
#define DMAR_CONTEXT_TRANSLATION_TYPE_PASSED_THROUGH 0x02U
#define DRHD_FLAG_INCLUDE_PCI_ALL_MASK (1U)
#define DEVFUN(dev, fun) ((((dev) & 0x1FU) << 3U) | (((fun) & 0x7U)))
struct dmar_dev_scope {
enum acpi_dmar_scope_type type;
uint8_t id;
uint8_t bus;
uint8_t devfun;
};
struct dmar_drhd {
uint32_t dev_cnt;
uint16_t segment;
uint8_t flags;
bool ignore;
uint64_t reg_base_addr;
/* assume no pci device hotplug support */
struct dmar_dev_scope *devices;
};
struct dmar_info {
uint32_t drhd_count;
struct dmar_drhd *drhd_units;
};
struct dmar_entry {
uint64_t lo_64;
uint64_t hi_64;
};
union dmar_ir_entry {
struct dmar_entry value;
union {
/* Remapped mode */
struct {
uint64_t present:1;
uint64_t fpd:1;
uint64_t dest_mode:1;
uint64_t rh:1;
uint64_t trigger_mode:1;
uint64_t delivery_mode:3;
uint64_t avail:4;
uint64_t rsvd_1:3;
uint64_t mode:1;
uint64_t vector:8;
uint64_t rsvd_2:8;
uint64_t dest:32;
uint64_t sid:16;
uint64_t sq:2;
uint64_t svt:2;
uint64_t rsvd_3:44;
} remap;
/* Posted mode */
struct {
uint64_t present:1;
uint64_t fpd:1;
uint64_t rsvd_1:6;
uint64_t avail:4;
uint64_t rsvd_2:2;
uint64_t urgent:1;
uint64_t mode:1;
uint64_t vector:8;
uint64_t rsvd_3:14;
uint64_t pda_l:26;
uint64_t sid:16;
uint64_t sq:2;
uint64_t svt:2;
uint64_t rsvd_4:12;
uint64_t pda_h:32;
} post;
} bits __packed;
};
#ifdef CONFIG_ACPI_PARSE_ENABLED
int32_t parse_dmar_table(struct dmar_info *plat_dmar_info);
#endif
/**
* @file vtd.h
*
* @brief public APIs for VT-d
*/
/**
* @brief VT-d
*
* @defgroup acrn_vtd ACRN VT-d
* @{
*/
/**
* @brief iommu domain.
*
* This struct declaration for iommu domain.
*
*/
struct iommu_domain;
/**
* @brief Assign a device specified by bus & devfun to a iommu domain.
*
* Remove the device from the from_domain (if non-NULL), and add it to the to_domain (if non-NULL).
* API silently fails to add/remove devices to/from domains that are under "Ignored" DMAR units.
*
* @param[in] from_domain iommu domain from which the device is removed from
* @param[in] to_domain iommu domain to which the device is assgined to
* @param[in] bus the 8-bit bus number of the device
* @param[in] devfun the 8-bit device(5-bit):function(3-bit) of the device
*
* @retval 0 on success.
* @retval 1 fail to unassign the device
*
* @pre domain != NULL
*
*/
int32_t move_pt_device(const struct iommu_domain *from_domain, const struct iommu_domain *to_domain, uint8_t bus, uint8_t devfun);
/**
* @brief Create a iommu domain for a VM specified by vm_id.
*
* Create a iommu domain for a VM specified by vm_id, along with address translation table and address width.
*
* @param[in] vm_id vm_id of the VM the domain created for
* @param[in] translation_table the physcial address of EPT table of the VM specified by the vm_id
* @param[in] addr_width address width of the VM
*
* @return Pointer to the created iommu_domain
*
* @retval NULL when \p translation_table is 0
* @retval !NULL when \p translation_table is not 0
*
* @pre vm_id is valid
* @pre translation_table != 0
*
*/
struct iommu_domain *create_iommu_domain(uint16_t vm_id, uint64_t translation_table, uint32_t addr_width);
/**
* @brief Destroy the specific iommu domain.
*
* Destroy the specific iommu domain when a VM no longer needs it.
*
* @param[in] domain iommu domain to destroy
*
* @pre domain != NULL
*
*/
void destroy_iommu_domain(struct iommu_domain *domain);
/**
* @brief Enable translation of IOMMUs.
*
* Enable address translation of all IOMMUs, which are not ignored on the platform.
*
*/
void enable_iommu(void);
/**
* @brief Suspend IOMMUs.
*
* Suspend all IOMMUs, which are not ignored on the platform.
*
*/
void suspend_iommu(void);
/**
* @brief Resume IOMMUs.
*
* Resume all IOMMUs, which are not ignored on the platform.
*
*/
void resume_iommu(void);
/**
* @brief Init IOMMUs.
*
* Register DMAR units on the platform according to the pre-parsed information
* or DMAR table. IOMMU is a must have feature, if init_iommu failed, the system
* should not continue booting.
*
* @retval 0 on success
* @retval <0 on failure
*
*/
int32_t init_iommu(void);
/**
* @brief Reserve num continuous IRTEs.
*
* @param[in] intr_src filled with type of interrupt source and the source
* @param[in] num number of IRTEs to reserve
* @param[out] start_id stard index of reserved IRTEs, caller should check the value is INVALID_IRTE_ID or not.
*
* @retval 0 on success, caller should check whether the returned start index is valid or not.
* @retval -EINVAL if corresponding DMAR is not preset.
*
* @pre num can only be 2, 4, 8, 16 or 32
*
*/
int32_t dmar_reserve_irte(const struct intr_source *intr_src, uint16_t num, uint16_t *start_id);
/**
* @brief Assign RTE for Interrupt Remapping Table.
*
* @param[in] intr_src filled with type of interrupt source and the source
* @param[in] irte filled with info about interrupt deliverymode, destination and destination mode
* @param[in] idx_in if this value is INVALID_IRTE_ID, a new IRTE will be allocated, otherwise, use the IRTE directly.
* @param[out] idx_out return the actual IRTE index used, need to check whether the returned value is valid or not.
*
* @retval -EINVAL if corresponding DMAR is not preset
* @retval 0 on success, caller should check whether the returned start index is valid or not.
*
*/
int32_t dmar_assign_irte(const struct intr_source *intr_src, union dmar_ir_entry *irte,
uint16_t idx_in, uint16_t *idx_out);
/**
* @brief Free RTE for Interrupt Remapping Table.
*
* @param[in] intr_src filled with type of interrupt source and the source
* @param[in] index into Interrupt Remapping Table
*
*/
void dmar_free_irte(const struct intr_source *intr_src, uint16_t index);
/**
* @brief Flash cacheline(s) for a specific address with specific size.
*
* Flash cacheline(s) for a specific address with specific size,
* if all IOMMUs active support page-walk coherency, cacheline(s) are not fluashed.
*
* @param[in] p the address of the buffer, whose cache need to be invalidated
* @param[in] size the size of the buffer
*
*/
void iommu_flush_cache(const void *p, uint32_t size);
/**
* @}
*/
#endif