acrn-hypervisor/devicemodel/core/vmmapi.c

745 lines
15 KiB
C

/*-
* Copyright (c) 2011 NetApp, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#include <sys/cdefs.h>
#include <sys/param.h>
#include <sys/sysctl.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <sys/uio.h>
#include <sys/user.h>
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#include <assert.h>
#include <string.h>
#include <ctype.h>
#include <fcntl.h>
#include <unistd.h>
#include <uuid/uuid.h>
#include "types.h"
#include "cpuset.h"
#include "segments.h"
#include "specialreg.h"
#include "vmm.h"
#include "vhm_ioctl_defs.h"
#include "vmmapi.h"
#include "mevent.h"
#include "dm.h"
#define MAP_NOCORE 0
#define MAP_ALIGNED_SUPER 0
/*
* Size of the guard region before and after the virtual address space
* mapping the guest physical memory. This must be a multiple of the
* superpage size for performance reasons.
*/
#define VM_MMAP_GUARD_SIZE (4 * MB)
#define SUPPORT_VHM_API_VERSION_MAJOR 1
#define SUPPORT_VHM_API_VERSION_MINOR 0
int
vm_create(const char *name)
{
/* TODO: specific part for vm create */
return 0;
}
static int
check_api(int fd)
{
struct api_version api_version;
int error;
error = ioctl(fd, IC_GET_API_VERSION, &api_version);
if (error) {
fprintf(stderr, "failed to get vhm api version\n");
return -1;
}
if (api_version.major_version != SUPPORT_VHM_API_VERSION_MAJOR ||
api_version.minor_version != SUPPORT_VHM_API_VERSION_MINOR) {
fprintf(stderr, "not support vhm api version\n");
return -1;
}
printf("VHM api version %d.%d\n", api_version.major_version,
api_version.minor_version);
return 0;
}
static int devfd = -1;
struct vmctx *
vm_open(const char *name)
{
struct vmctx *ctx;
struct acrn_create_vm create_vm;
int error, retry = 10;
uuid_t vm_uuid;
ctx = calloc(1, sizeof(struct vmctx) + strlen(name) + 1);
assert(ctx != NULL);
assert(devfd == -1);
devfd = open("/dev/acrn_vhm", O_RDWR|O_CLOEXEC);
if (devfd == -1) {
fprintf(stderr, "Could not open /dev/acrn_vhm\n");
goto err;
}
if (check_api(devfd) < 0)
goto err;
if (guest_uuid_str == NULL)
guest_uuid_str = "d2795438-25d6-11e8-864e-cb7a18b34643";
error = uuid_parse(guest_uuid_str, vm_uuid);
if (error != 0)
goto err;
/* save vm uuid to ctx */
uuid_copy(ctx->vm_uuid, vm_uuid);
/* Pass uuid as parameter of create vm*/
uuid_copy(create_vm.GUID, vm_uuid);
ctx->fd = devfd;
ctx->memflags = 0;
ctx->lowmem_limit = 2 * GB;
ctx->name = (char *)(ctx + 1);
strcpy(ctx->name, name);
/* Set trusty enable flag */
if (trusty_enabled)
create_vm.vm_flag |= SECURE_WORLD_ENABLED;
else
create_vm.vm_flag &= (~SECURE_WORLD_ENABLED);
while (retry > 0) {
error = ioctl(ctx->fd, IC_CREATE_VM, &create_vm);
if (error == 0)
break;
usleep(500000);
retry--;
}
if (error) {
fprintf(stderr, "failed to create VM %s\n", ctx->name);
goto err;
}
ctx->vmid = create_vm.vmid;
return ctx;
err:
free(ctx);
return NULL;
}
void
vm_close(struct vmctx *ctx)
{
if (!ctx)
return;
close(ctx->fd);
free(ctx);
devfd = -1;
}
int
vm_set_shared_io_page(struct vmctx *ctx, uint64_t page_vma)
{
int error;
error = ioctl(ctx->fd, IC_SET_IOREQ_BUFFER, page_vma);
if (error) {
fprintf(stderr, "failed to setup shared io page create VM %s\n",
ctx->name);
return -1;
}
return 0;
}
int
vm_create_ioreq_client(struct vmctx *ctx)
{
return ioctl(ctx->fd, IC_CREATE_IOREQ_CLIENT, 0);
}
int
vm_destroy_ioreq_client(struct vmctx *ctx)
{
return ioctl(ctx->fd, IC_DESTROY_IOREQ_CLIENT, ctx->ioreq_client);
}
int
vm_attach_ioreq_client(struct vmctx *ctx)
{
int error;
error = ioctl(ctx->fd, IC_ATTACH_IOREQ_CLIENT, ctx->ioreq_client);
if (error) {
fprintf(stderr, "attach ioreq client return %d "
"(1 = destroying, could be triggered by Power State "
"change, others = error)\n", error);
return error;
}
return 0;
}
int
vm_notify_request_done(struct vmctx *ctx, int vcpu)
{
int error;
struct ioreq_notify notify;
bzero(&notify, sizeof(notify));
notify.client_id = ctx->ioreq_client;
notify.vcpu = vcpu;
error = ioctl(ctx->fd, IC_NOTIFY_REQUEST_FINISH, &notify);
if (error) {
fprintf(stderr, "failed: notify request finish\n");
return -1;
}
return 0;
}
void
vm_destroy(struct vmctx *ctx)
{
if (ctx)
ioctl(ctx->fd, IC_DESTROY_VM, NULL);
}
int
vm_parse_memsize(const char *optarg, size_t *ret_memsize)
{
char *endptr;
size_t optval;
int shift;
optval = strtoul(optarg, &endptr, 0);
switch (tolower((unsigned char)*endptr)) {
case 'g':
shift = 30;
break;
case 'm':
shift = 20;
break;
case 'k':
shift = 10;
break;
case 'b':
case '\0': /* No unit. */
shift = 0;
default:
/* Unrecognized unit. */
return -1;
}
optval = optval << shift;
if (optval < 128 * MB)
return -1;
*ret_memsize = optval;
return 0;
}
uint32_t
vm_get_lowmem_limit(struct vmctx *ctx)
{
return ctx->lowmem_limit;
}
void
vm_set_lowmem_limit(struct vmctx *ctx, uint32_t limit)
{
ctx->lowmem_limit = limit;
}
void
vm_set_memflags(struct vmctx *ctx, int flags)
{
ctx->memflags = flags;
}
int
vm_get_memflags(struct vmctx *ctx)
{
return ctx->memflags;
}
int
vm_map_memseg_vma(struct vmctx *ctx, size_t len, vm_paddr_t gpa,
uint64_t vma, int prot)
{
struct vm_memmap memmap;
bzero(&memmap, sizeof(struct vm_memmap));
memmap.type = VM_MEMMAP_SYSMEM;
memmap.using_vma = 1;
memmap.vma_base = vma;
memmap.len = len;
memmap.gpa = gpa;
memmap.prot = prot;
return ioctl(ctx->fd, IC_SET_MEMSEG, &memmap);
}
static int
vm_alloc_set_memseg(struct vmctx *ctx, int segid, size_t len,
vm_paddr_t gpa, int prot, char *base, char **ptr)
{
struct vm_memseg memseg;
struct vm_memmap memmap;
int error, flags;
if (segid == VM_MEMMAP_SYSMEM) {
bzero(&memseg, sizeof(struct vm_memseg));
memseg.len = len;
memseg.gpa = gpa;
error = ioctl(ctx->fd, IC_ALLOC_MEMSEG, &memseg);
if (error)
return error;
bzero(&memmap, sizeof(struct vm_memmap));
memmap.type = segid;
memmap.len = len;
memmap.gpa = gpa;
memmap.prot = PROT_ALL;
error = ioctl(ctx->fd, IC_SET_MEMSEG, &memmap);
if (error)
return error;
flags = MAP_SHARED | MAP_FIXED;
if ((ctx->memflags & VM_MEM_F_INCORE) == 0)
flags |= MAP_NOCORE;
/* mmap into the process address space on the host */
*ptr = mmap(base + gpa, len, PROT_RW, flags, ctx->fd, gpa);
if (*ptr == MAP_FAILED) {
*ptr = NULL;
error = -1;
}
} else
/* XXX: no VM_BOOTROM/VM_FRAMEBUFFER support*/
error = -1;
return error;
}
int
vm_setup_memory(struct vmctx *ctx, size_t memsize, enum vm_mmap_style vms)
{
size_t objsize, len;
vm_paddr_t gpa;
int prot;
char *baseaddr, *ptr;
int error, flags;
assert(vms == VM_MMAP_ALL);
/*
* If 'memsize' cannot fit entirely in the 'lowmem' segment then
* create another 'highmem' segment above 4GB for the remainder.
*/
if (memsize > ctx->lowmem_limit) {
ctx->lowmem = ctx->lowmem_limit;
ctx->highmem = memsize - ctx->lowmem_limit;
objsize = 4*GB + ctx->highmem;
} else {
ctx->lowmem = memsize;
ctx->highmem = 0;
objsize = ctx->lowmem;
}
if (hugetlb)
return hugetlb_setup_memory(ctx);
/*
* Stake out a contiguous region covering the guest physical memory
* and the adjoining guard regions.
*/
len = VM_MMAP_GUARD_SIZE + objsize + VM_MMAP_GUARD_SIZE;
flags = MAP_PRIVATE | MAP_ANON | MAP_NOCORE | MAP_ALIGNED_SUPER;
ptr = mmap(NULL, len, PROT_NONE, flags, -1, 0);
if (ptr == MAP_FAILED)
return -1;
baseaddr = ptr + VM_MMAP_GUARD_SIZE;
/* TODO: need add error handling */
/* alloc & map for lowmem */
if (ctx->lowmem > 0) {
gpa = 0;
len = ctx->lowmem;
prot = PROT_ALL;
error = vm_alloc_set_memseg(ctx, VM_MEMMAP_SYSMEM, len, gpa,
prot, baseaddr, &ctx->mmap_lowmem);
if (error)
return error;
}
/* alloc & map for highmem */
if (ctx->highmem > 0) {
gpa = 4*GB;
len = ctx->highmem;
prot = PROT_ALL;
error = vm_alloc_set_memseg(ctx, VM_MEMMAP_SYSMEM, len, gpa,
prot, baseaddr, &ctx->mmap_highmem);
if (error)
return error;
}
ctx->baseaddr = baseaddr;
return 0;
}
void
vm_unsetup_memory(struct vmctx *ctx)
{
if (hugetlb) {
hugetlb_unsetup_memory(ctx);
return;
}
if (ctx->lowmem > 0)
munmap(ctx->mmap_lowmem, ctx->lowmem);
if (ctx->highmem > 0)
munmap(ctx->mmap_highmem, ctx->highmem);
}
/*
* Returns a non-NULL pointer if [gaddr, gaddr+len) is entirely contained in
* the lowmem or highmem regions.
*
* In particular return NULL if [gaddr, gaddr+len) falls in guest MMIO region.
* The instruction emulation code depends on this behavior.
*/
void *
vm_map_gpa(struct vmctx *ctx, vm_paddr_t gaddr, size_t len)
{
if (ctx->lowmem > 0) {
if (gaddr < ctx->lowmem && len <= ctx->lowmem &&
gaddr + len <= ctx->lowmem)
return (ctx->baseaddr + gaddr);
}
if (ctx->highmem > 0) {
if (gaddr >= 4*GB) {
if (gaddr < 4*GB + ctx->highmem &&
len <= ctx->highmem &&
gaddr + len <= 4*GB + ctx->highmem)
return (ctx->baseaddr + gaddr);
}
}
return NULL;
}
size_t
vm_get_lowmem_size(struct vmctx *ctx)
{
return ctx->lowmem;
}
size_t
vm_get_highmem_size(struct vmctx *ctx)
{
return ctx->highmem;
}
void *
vm_create_devmem(struct vmctx *ctx, int segid, const char *name, size_t len)
{
return MAP_FAILED;
}
int
vm_run(struct vmctx *ctx)
{
int error;
error = ioctl(ctx->fd, IC_START_VM, &ctx->vmid);
return error;
}
void
vm_pause(struct vmctx *ctx)
{
ioctl(ctx->fd, IC_PAUSE_VM, &ctx->vmid);
}
static int suspend_mode = VM_SUSPEND_NONE;
void
vm_set_suspend_mode(enum vm_suspend_how how)
{
suspend_mode = how;
}
int
vm_get_suspend_mode(void)
{
return suspend_mode;
}
int
vm_suspend(struct vmctx *ctx, enum vm_suspend_how how)
{
vm_set_suspend_mode(how);
mevent_notify();
return 0;
}
int
vm_apicid2vcpu(struct vmctx *ctx, int apicid)
{
/*
* The apic id associated with the 'vcpu' has the same numerical value
* as the 'vcpu' itself.
*/
return apicid;
}
int
vm_lapic_msi(struct vmctx *ctx, uint64_t addr, uint64_t msg)
{
struct acrn_msi_entry msi;
bzero(&msi, sizeof(msi));
msi.msi_addr = addr;
msi.msi_data = msg;
return ioctl(ctx->fd, IC_INJECT_MSI, &msi);
}
int
vm_ioapic_assert_irq(struct vmctx *ctx, int irq)
{
struct acrn_irqline ioapic_irq;
bzero(&ioapic_irq, sizeof(ioapic_irq));
ioapic_irq.intr_type = ACRN_INTR_TYPE_IOAPIC;
ioapic_irq.ioapic_irq = irq;
return ioctl(ctx->fd, IC_ASSERT_IRQLINE, &ioapic_irq);
}
int
vm_ioapic_deassert_irq(struct vmctx *ctx, int irq)
{
struct acrn_irqline ioapic_irq;
bzero(&ioapic_irq, sizeof(ioapic_irq));
ioapic_irq.intr_type = ACRN_INTR_TYPE_IOAPIC;
ioapic_irq.ioapic_irq = irq;
return ioctl(ctx->fd, IC_DEASSERT_IRQLINE, &ioapic_irq);
}
static int
vm_isa_irq(struct vmctx *ctx, int irq, int ioapic_irq, unsigned long call_id)
{
struct acrn_irqline isa_irq;
bzero(&isa_irq, sizeof(isa_irq));
isa_irq.intr_type = ACRN_INTR_TYPE_ISA;
isa_irq.pic_irq = irq;
isa_irq.ioapic_irq = ioapic_irq;
return ioctl(ctx->fd, call_id, &isa_irq);
}
int
vm_isa_assert_irq(struct vmctx *ctx, int atpic_irq, int ioapic_irq)
{
return vm_isa_irq(ctx, atpic_irq, ioapic_irq, IC_ASSERT_IRQLINE);
}
int
vm_isa_deassert_irq(struct vmctx *ctx, int atpic_irq, int ioapic_irq)
{
return vm_isa_irq(ctx, atpic_irq, ioapic_irq, IC_DEASSERT_IRQLINE);
}
int
vm_isa_pulse_irq(struct vmctx *ctx, int atpic_irq, int ioapic_irq)
{
return vm_isa_irq(ctx, atpic_irq, ioapic_irq, IC_PULSE_IRQLINE);
}
int
vm_assign_ptdev(struct vmctx *ctx, int bus, int slot, int func)
{
uint16_t bdf;
bdf = ((bus & 0xff) << 8) | ((slot & 0x1f) << 3) |
(func & 0x7);
return ioctl(ctx->fd, IC_ASSIGN_PTDEV, &bdf);
}
int
vm_unassign_ptdev(struct vmctx *ctx, int bus, int slot, int func)
{
uint16_t bdf;
bdf = ((bus & 0xff) << 8) | ((slot & 0x1f) << 3) |
(func & 0x7);
return ioctl(ctx->fd, IC_DEASSIGN_PTDEV, &bdf);
}
int
vm_map_ptdev_mmio(struct vmctx *ctx, int bus, int slot, int func,
vm_paddr_t gpa, size_t len, vm_paddr_t hpa)
{
struct vm_memmap memmap;
bzero(&memmap, sizeof(struct vm_memmap));
memmap.type = VM_MMIO;
memmap.len = len;
memmap.gpa = gpa;
memmap.hpa = hpa;
memmap.prot = PROT_ALL;
return ioctl(ctx->fd, IC_SET_MEMSEG, &memmap);
}
int
vm_setup_ptdev_msi(struct vmctx *ctx, struct acrn_vm_pci_msix_remap *msi_remap)
{
if (!msi_remap)
return -1;
return ioctl(ctx->fd, IC_VM_PCI_MSIX_REMAP, msi_remap);
}
int
vm_set_ptdev_msix_info(struct vmctx *ctx, struct ic_ptdev_irq *ptirq)
{
if (!ptirq)
return -1;
return ioctl(ctx->fd, IC_SET_PTDEV_INTR_INFO, ptirq);
}
int
vm_reset_ptdev_msix_info(struct vmctx *ctx, uint16_t virt_bdf,
int vector_count)
{
struct ic_ptdev_irq ptirq;
bzero(&ptirq, sizeof(ptirq));
ptirq.type = IRQ_MSIX;
ptirq.virt_bdf = virt_bdf;
ptirq.msix.vector_cnt = vector_count;
return ioctl(ctx->fd, IC_RESET_PTDEV_INTR_INFO, &ptirq);
}
int
vm_set_ptdev_intx_info(struct vmctx *ctx, uint16_t virt_bdf, uint16_t phys_bdf,
int virt_pin, int phys_pin, bool pic_pin)
{
struct ic_ptdev_irq ptirq;
bzero(&ptirq, sizeof(ptirq));
ptirq.type = IRQ_INTX;
ptirq.virt_bdf = virt_bdf;
ptirq.phys_bdf = phys_bdf;
ptirq.intx.virt_pin = virt_pin;
ptirq.intx.phys_pin = phys_pin;
ptirq.intx.is_pic_pin = pic_pin;
return ioctl(ctx->fd, IC_SET_PTDEV_INTR_INFO, &ptirq);
}
int
vm_reset_ptdev_intx_info(struct vmctx *ctx, int virt_pin, bool pic_pin)
{
struct ic_ptdev_irq ptirq;
bzero(&ptirq, sizeof(ptirq));
ptirq.type = IRQ_INTX;
ptirq.intx.virt_pin = virt_pin;
ptirq.intx.is_pic_pin = pic_pin;
return ioctl(ctx->fd, IC_RESET_PTDEV_INTR_INFO, &ptirq);
}
int
vm_create_vcpu(struct vmctx *ctx, int vcpu_id)
{
struct acrn_create_vcpu cv;
int error;
bzero(&cv, sizeof(struct acrn_create_vcpu));
cv.vcpu_id = vcpu_id;
error = ioctl(ctx->fd, IC_CREATE_VCPU, &cv);
return error;
}
int
vm_get_device_fd(struct vmctx *ctx)
{
return ctx->fd;
}
int
vm_get_cpu_state(struct vmctx *ctx, void *state_buf)
{
return ioctl(ctx->fd, IC_PM_GET_CPU_STATE, state_buf);
}