acrn-hypervisor/hypervisor/common/hypercall.c

869 lines
20 KiB
C

/*
* Copyright (C) 2018 Intel Corporation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <hypervisor.h>
#include <hv_lib.h>
#include <acrn_common.h>
#include <hv_arch.h>
#include <schedule.h>
#include <hypercall.h>
#include <acrn_hv_defs.h>
#include <hv_debug.h>
#include <version.h>
#define ACRN_DBG_HYCALL 6
int64_t hcall_get_api_version(struct vm *vm, uint64_t param)
{
struct hc_api_version version;
if (!is_vm0(vm))
return -1;
version.major_version = HV_MAJOR_VERSION;
version.minor_version = HV_MINOR_VERSION;
if (copy_to_vm(vm, &version, param)) {
pr_err("%s: Unable copy param to vm\n", __func__);
return -1;
}
return 0;
}
static int handle_vpic_irqline(struct vm *vm, int irq, enum irq_mode mode)
{
int ret = -1;
if (!vm)
return ret;
switch (mode) {
case IRQ_ASSERT:
ret = vpic_assert_irq(vm, irq);
break;
case IRQ_DEASSERT:
ret = vpic_deassert_irq(vm, irq);
break;
case IRQ_PULSE:
ret = vpic_pulse_irq(vm, irq);
default:
break;
}
return ret;
}
static int
handle_vioapic_irqline(struct vm *vm, int irq, enum irq_mode mode)
{
int ret = -1;
if (!vm)
return ret;
switch (mode) {
case IRQ_ASSERT:
ret = vioapic_assert_irq(vm, irq);
break;
case IRQ_DEASSERT:
ret = vioapic_deassert_irq(vm, irq);
break;
case IRQ_PULSE:
ret = vioapic_pulse_irq(vm, irq);
break;
default:
break;
}
return ret;
}
static int handle_virt_irqline(struct vm *vm, uint64_t target_vmid,
struct acrn_irqline *param, enum irq_mode mode)
{
int ret = 0;
long intr_type;
struct vm *target_vm = get_vm_from_vmid(target_vmid);
if (!vm || !param)
return -1;
intr_type = param->intr_type;
switch (intr_type) {
case ACRN_INTR_TYPE_ISA:
/* Call vpic for pic injection */
ret = handle_vpic_irqline(target_vm, param->pic_irq, mode);
/* call vioapic for ioapic injection if ioapic_irq != -1*/
if (param->ioapic_irq != -1UL) {
/* handle IOAPIC irqline */
ret = handle_vioapic_irqline(target_vm,
param->ioapic_irq, mode);
}
break;
case ACRN_INTR_TYPE_IOAPIC:
/* handle IOAPIC irqline */
ret = handle_vioapic_irqline(target_vm,
param->ioapic_irq, mode);
break;
default:
dev_dbg(ACRN_DBG_HYCALL, "vINTR inject failed. type=%d",
intr_type);
ret = -1;
}
return ret;
}
int64_t hcall_create_vm(struct vm *vm, uint64_t param)
{
int64_t ret = 0;
struct vm *target_vm = NULL;
/* VM are created from hv_main() directly
* Here we just return the vmid for DM
*/
struct acrn_create_vm cv;
struct vm_description vm_desc;
memset((void *)&cv, 0, sizeof(cv));
if (copy_from_vm(vm, &cv, param)) {
pr_err("%s: Unable copy param to vm\n", __func__);
return -1;
}
memset(&vm_desc, 0, sizeof(vm_desc));
vm_desc.secure_world_enabled = cv.secure_world_enabled;
memcpy_s(&vm_desc.GUID[0], 16, &cv.GUID[0], 16);
ret = create_vm(&vm_desc, &target_vm);
if (ret != 0) {
dev_dbg(ACRN_DBG_HYCALL, "HCALL: Create VM failed");
cv.vmid = ACRN_INVALID_VMID;
ret = -1;
} else {
cv.vmid = target_vm->attr.id;
ret = 0;
}
if (copy_to_vm(vm, &cv.vmid, param)) {
pr_err("%s: Unable copy param to vm\n", __func__);
return -1;
}
return ret;
}
int64_t hcall_destroy_vm(uint64_t vmid)
{
int64_t ret = 0;
struct vm *target_vm = get_vm_from_vmid(vmid);
if (target_vm == NULL)
return -1;
ret = shutdown_vm(target_vm);
return ret;
}
int64_t hcall_resume_vm(uint64_t vmid)
{
int64_t ret = 0;
struct vm *target_vm = get_vm_from_vmid(vmid);
if (target_vm == NULL)
return -1;
if (target_vm->sw.req_buf == 0)
ret = -1;
else
ret = start_vm(target_vm);
return ret;
}
int64_t hcall_pause_vm(uint64_t vmid)
{
struct vm *target_vm = get_vm_from_vmid(vmid);
if (target_vm == NULL)
return -1;
pause_vm(target_vm);
return 0;
}
int64_t hcall_create_vcpu(struct vm *vm, uint64_t vmid, uint64_t param)
{
int ret, pcpu_id;
struct acrn_create_vcpu cv;
struct vm *target_vm = get_vm_from_vmid(vmid);
if (!target_vm || !param)
return -1;
if (copy_from_vm(vm, &cv, param)) {
pr_err("%s: Unable copy param to vm\n", __func__);
return -1;
}
pcpu_id = allocate_pcpu();
if (-1 == pcpu_id) {
pr_err("%s: No physical available\n", __func__);
return -1;
}
ret = prepare_vcpu(target_vm, pcpu_id);
return ret;
}
int64_t hcall_assert_irqline(struct vm *vm, uint64_t vmid, uint64_t param)
{
int64_t ret = 0;
struct acrn_irqline irqline;
if (copy_from_vm(vm, &irqline, param)) {
pr_err("%s: Unable copy param to vm\n", __func__);
return -1;
}
ret = handle_virt_irqline(vm, vmid, &irqline, IRQ_ASSERT);
return ret;
}
int64_t hcall_deassert_irqline(struct vm *vm, uint64_t vmid, uint64_t param)
{
int64_t ret = 0;
struct acrn_irqline irqline;
if (copy_from_vm(vm, &irqline, param)) {
pr_err("%s: Unable copy param to vm\n", __func__);
return -1;
}
ret = handle_virt_irqline(vm, vmid, &irqline, IRQ_DEASSERT);
return ret;
}
int64_t hcall_pulse_irqline(struct vm *vm, uint64_t vmid, uint64_t param)
{
int64_t ret = 0;
struct acrn_irqline irqline;
if (copy_from_vm(vm, &irqline, param)) {
pr_err("%s: Unable copy param to vm\n", __func__);
return -1;
}
ret = handle_virt_irqline(vm, vmid, &irqline, IRQ_PULSE);
return ret;
}
int64_t hcall_inject_msi(struct vm *vm, uint64_t vmid, uint64_t param)
{
int ret = 0;
struct acrn_msi_entry msi;
struct vm *target_vm = get_vm_from_vmid(vmid);
if (target_vm == NULL)
return -1;
memset((void *)&msi, 0, sizeof(msi));
if (copy_from_vm(vm, &msi, param)) {
pr_err("%s: Unable copy param to vm\n", __func__);
return -1;
}
ret = vlapic_intr_msi(target_vm, msi.msi_addr, msi.msi_data);
return ret;
}
int64_t hcall_set_ioreq_buffer(struct vm *vm, uint64_t vmid, uint64_t param)
{
int64_t ret = 0;
struct acrn_set_ioreq_buffer iobuf;
struct vm *target_vm = get_vm_from_vmid(vmid);
if (target_vm == NULL)
return -1;
memset((void *)&iobuf, 0, sizeof(iobuf));
if (copy_from_vm(vm, &iobuf, param)) {
pr_err("%s: Unable copy param to vm\n", __func__);
return -1;
}
dev_dbg(ACRN_DBG_HYCALL, "[%d] SET BUFFER=0x%x",
vmid, iobuf.req_buf);
/* store gpa of guest request_buffer */
target_vm->sw.req_buf = gpa2hpa(vm, iobuf.req_buf);
return ret;
}
static void complete_request(struct vcpu *vcpu)
{
/*
* If vcpu is in Zombie state and will be destroyed soon. Just
* mark ioreq done and don't resume vcpu.
*/
if (vcpu->state == VCPU_ZOMBIE) {
struct vhm_request_buffer *req_buf;
req_buf = (struct vhm_request_buffer *)vcpu->vm->sw.req_buf;
req_buf->req_queue[vcpu->vcpu_id].valid = false;
atomic_store_rel_32(&vcpu->ioreq_pending, 0);
return;
}
switch (vcpu->req.type) {
case REQ_MMIO:
request_vcpu_pre_work(vcpu, ACRN_VCPU_MMIO_COMPLETE);
break;
case REQ_PORTIO:
dm_emulate_pio_post(vcpu);
break;
default:
break;
}
resume_vcpu(vcpu);
}
int64_t hcall_notify_req_finish(uint64_t vmid, uint64_t vcpu_id)
{
int64_t ret = 0;
struct vhm_request_buffer *req_buf;
struct vhm_request *req;
struct vcpu *vcpu;
struct vm *target_vm = get_vm_from_vmid(vmid);
/* make sure we have set req_buf */
if (!target_vm || target_vm->sw.req_buf == 0)
return -1;
dev_dbg(ACRN_DBG_HYCALL, "[%d] NOTIFY_FINISH for vcpu %d",
vmid, vcpu_id);
vcpu = vcpu_from_vid(target_vm, vcpu_id);
ASSERT(vcpu != NULL, "Failed to get VCPU context.");
req_buf = (struct vhm_request_buffer *)target_vm->sw.req_buf;
req = req_buf->req_queue + vcpu_id;
if (req->valid &&
((req->processed == REQ_STATE_SUCCESS) ||
(req->processed == REQ_STATE_FAILED)))
complete_request(vcpu);
return ret;
}
int64_t hcall_set_vm_memmap(struct vm *vm, uint64_t vmid, uint64_t param)
{
int64_t ret = 0;
uint64_t hpa;
uint32_t attr, prot;
struct vm_set_memmap memmap;
struct vm *target_vm = get_vm_from_vmid(vmid);
if (!vm || !target_vm)
return -1;
memset((void *)&memmap, 0, sizeof(memmap));
if (copy_from_vm(vm, &memmap, param)) {
pr_err("%s: Unable copy param to vm\n", __func__);
return -1;
}
if (!is_vm0(vm)) {
pr_err("%s: ERROR! Not coming from service vm", __func__);
return -1;
}
if (is_vm0(target_vm)) {
pr_err("%s: ERROR! Targeting to service vm", __func__);
return -1;
}
if ((memmap.length & 0xFFF) != 0) {
pr_err("%s: ERROR! [vm%d] map size 0x%x is not page aligned",
__func__, vmid, memmap.length);
return -1;
}
hpa = gpa2hpa(vm, memmap.vm0_gpa);
dev_dbg(ACRN_DBG_HYCALL, "[vm%d] gpa=0x%x hpa=0x%x size=0x%x",
vmid, memmap.remote_gpa, hpa, memmap.length);
/* Check prot */
attr = 0;
if (memmap.type != MAP_UNMAP) {
prot = memmap.prot;
if (prot & MEM_ACCESS_READ)
attr |= MMU_MEM_ATTR_READ;
if (prot & MEM_ACCESS_WRITE)
attr |= MMU_MEM_ATTR_WRITE;
if (prot & MEM_ACCESS_EXEC)
attr |= MMU_MEM_ATTR_EXECUTE;
if (prot & MEM_TYPE_WB)
attr |= MMU_MEM_ATTR_WB_CACHE;
else if (prot & MEM_TYPE_WT)
attr |= MMU_MEM_ATTR_WT_CACHE;
else if (prot & MEM_TYPE_UC)
attr |= MMU_MEM_ATTR_UNCACHED;
else if (prot & MEM_TYPE_WC)
attr |= MMU_MEM_ATTR_WC;
else if (prot & MEM_TYPE_WP)
attr |= MMU_MEM_ATTR_WP;
else
attr |= MMU_MEM_ATTR_UNCACHED;
}
/* create gpa to hpa EPT mapping */
ret = ept_mmap(target_vm, hpa,
memmap.remote_gpa, memmap.length, memmap.type, attr);
return ret;
}
int64_t hcall_remap_pci_msix(struct vm *vm, uint64_t vmid, uint64_t param)
{
int64_t ret = 0;
struct acrn_vm_pci_msix_remap remap;
struct ptdev_msi_info info;
struct vm *target_vm = get_vm_from_vmid(vmid);
if (target_vm == NULL)
return -1;
memset((void *)&remap, 0, sizeof(remap));
if (copy_from_vm(vm, &remap, param)) {
pr_err("%s: Unable copy param to vm\n", __func__);
return -1;
}
if (!is_vm0(vm))
ret = -1;
else {
info.msix = remap.msix;
info.msix_entry_index = remap.msix_entry_index;
info.vmsi_ctl = remap.msi_ctl;
info.vmsi_addr = remap.msi_addr;
info.vmsi_data = remap.msi_data;
ret = ptdev_msix_remap(target_vm,
remap.virt_bdf, &info);
remap.msi_data = info.pmsi_data;
remap.msi_addr = info.pmsi_addr;
if (copy_to_vm(vm, &remap, param)) {
pr_err("%s: Unable copy param to vm\n", __func__);
return -1;
}
}
return ret;
}
int64_t hcall_gpa_to_hpa(struct vm *vm, uint64_t vmid, uint64_t param)
{
int64_t ret = 0;
struct vm_gpa2hpa v_gpa2hpa;
struct vm *target_vm = get_vm_from_vmid(vmid);
if (target_vm == NULL)
return -1;
memset((void *)&v_gpa2hpa, 0, sizeof(v_gpa2hpa));
if (copy_from_vm(vm, &v_gpa2hpa, param)) {
pr_err("HCALL gpa2hpa: Unable copy param from vm\n");
return -1;
}
v_gpa2hpa.hpa = gpa2hpa(target_vm, v_gpa2hpa.gpa);
if (copy_to_vm(vm, &v_gpa2hpa, param)) {
pr_err("%s: Unable copy param to vm\n", __func__);
return -1;
}
return ret;
}
int64_t hcall_assign_ptdev(struct vm *vm, uint64_t vmid, uint64_t param)
{
int64_t ret = 0;
uint16_t bdf;
struct vm *target_vm = get_vm_from_vmid(vmid);
if (target_vm == NULL)
return -1;
if (copy_from_vm(vm, &bdf, param)) {
pr_err("%s: Unable copy param to vm\n", __func__);
return -1;
}
/* create a iommu domain for target VM if not created */
if (!target_vm->iommu_domain) {
ASSERT(target_vm->arch_vm.ept, "EPT of VM not set!");
/* TODO: how to get vm's address width? */
target_vm->iommu_domain = create_iommu_domain(vmid,
target_vm->arch_vm.ept, 48);
ASSERT(target_vm->iommu_domain,
"failed to created iommu domain!");
}
ret = assign_iommu_device(target_vm->iommu_domain,
(uint8_t)(bdf >> 8), (uint8_t)(bdf & 0xff));
return ret;
}
int64_t hcall_deassign_ptdev(struct vm *vm, uint64_t vmid, uint64_t param)
{
int64_t ret = 0;
uint16_t bdf;
struct vm *target_vm = get_vm_from_vmid(vmid);
if (target_vm == NULL)
return -1;
if (copy_from_vm(vm, &bdf, param)) {
pr_err("%s: Unable copy param to vm\n", __func__);
return -1;
}
ret = unassign_iommu_device(target_vm->iommu_domain,
(uint8_t)(bdf >> 8), (uint8_t)(bdf & 0xff));
return ret;
}
int64_t hcall_set_ptdev_intr_info(struct vm *vm, uint64_t vmid, uint64_t param)
{
int64_t ret = 0;
struct hc_ptdev_irq irq;
struct vm *target_vm = get_vm_from_vmid(vmid);
if (target_vm == NULL)
return -1;
memset((void *)&irq, 0, sizeof(irq));
if (copy_from_vm(vm, &irq, param)) {
pr_err("%s: Unable copy param to vm\n", __func__);
return -1;
}
if (irq.type == IRQ_INTX)
ptdev_add_intx_remapping(target_vm,
irq.virt_bdf, irq.phys_bdf,
irq.is.intx.virt_pin, irq.is.intx.phys_pin,
irq.is.intx.pic_pin);
else if (irq.type == IRQ_MSI || irq.type == IRQ_MSIX)
ptdev_add_msix_remapping(target_vm,
irq.virt_bdf, irq.phys_bdf,
irq.is.msix.vector_cnt);
return ret;
}
int64_t
hcall_reset_ptdev_intr_info(struct vm *vm, uint64_t vmid, uint64_t param)
{
int64_t ret = 0;
struct hc_ptdev_irq irq;
struct vm *target_vm = get_vm_from_vmid(vmid);
if (target_vm == NULL)
return -1;
memset((void *)&irq, 0, sizeof(irq));
if (copy_from_vm(vm, &irq, param)) {
pr_err("%s: Unable copy param to vm\n", __func__);
return -1;
}
if (irq.type == IRQ_INTX)
ptdev_remove_intx_remapping(target_vm,
irq.is.intx.virt_pin,
irq.is.intx.pic_pin);
else if (irq.type == IRQ_MSI || irq.type == IRQ_MSIX)
ptdev_remove_msix_remapping(target_vm,
irq.virt_bdf,
irq.is.msix.vector_cnt);
return ret;
}
#ifdef HV_DEBUG
int64_t hcall_setup_sbuf(struct vm *vm, uint64_t param)
{
struct sbuf_setup_param ssp;
uint64_t *hva;
memset((void *)&ssp, 0, sizeof(ssp));
if (copy_from_vm(vm, &ssp, param)) {
pr_err("%s: Unable copy param to vm\n", __func__);
return -1;
}
if (ssp.gpa)
hva = (uint64_t *)GPA2HVA(vm, ssp.gpa);
else
hva = (uint64_t *)NULL;
return sbuf_share_setup(ssp.pcpu_id, ssp.sbuf_id, hva);
}
#else /* HV_DEBUG */
int64_t hcall_setup_sbuf(__unused struct vm *vm,
__unused uint64_t param)
{
return -1;
}
#endif /* HV_DEBUG */
static void fire_vhm_interrupt(void)
{
/*
* use vLAPIC to inject vector to SOS vcpu 0 if vlapic is enabled
* otherwise, send IPI hardcoded to CPU_BOOT_ID
*/
struct vm *vm0;
struct vcpu *vcpu;
vm0 = get_vm_from_vmid(0);
ASSERT(vm0, "VM Pointer is NULL");
vcpu = vcpu_from_vid(vm0, 0);
ASSERT(vcpu, "vcpu_from_vid failed");
vlapic_intr_edge(vcpu, VECTOR_VIRT_IRQ_VHM);
}
#ifdef HV_DEBUG
static void acrn_print_request(int vcpu_id, struct vhm_request *req)
{
switch (req->type) {
case REQ_MMIO:
dev_dbg(ACRN_DBG_HYCALL, "[vcpu_id=%d type=MMIO]", vcpu_id);
dev_dbg(ACRN_DBG_HYCALL,
"gpa=0x%lx, R/W=%d, size=%ld value=0x%lx processed=%lx",
req->reqs.mmio_request.address,
req->reqs.mmio_request.direction,
req->reqs.mmio_request.size,
req->reqs.mmio_request.value,
req->processed);
break;
case REQ_PORTIO:
dev_dbg(ACRN_DBG_HYCALL, "[vcpu_id=%d type=PORTIO]", vcpu_id);
dev_dbg(ACRN_DBG_HYCALL,
"IO=0x%lx, R/W=%d, size=%ld value=0x%lx processed=%lx",
req->reqs.pio_request.address,
req->reqs.pio_request.direction,
req->reqs.pio_request.size,
req->reqs.pio_request.value,
req->processed);
break;
default:
dev_dbg(ACRN_DBG_HYCALL, "[vcpu_id=%d type=%d] NOT support type",
vcpu_id, req->type);
break;
}
}
#else
static void acrn_print_request(__unused int vcpu_id,
__unused struct vhm_request *req)
{
}
#endif
int acrn_insert_request_wait(struct vcpu *vcpu, struct vhm_request *req)
{
struct vhm_request_buffer *req_buf =
(void *)HPA2HVA(vcpu->vm->sw.req_buf);
long cur;
ASSERT(sizeof(*req) == (4096/VHM_REQUEST_MAX),
"vhm_request page broken!");
if (!vcpu || !req || vcpu->vm->sw.req_buf == 0)
return -1;
/* ACRN insert request to VHM and inject upcall */
cur = vcpu->vcpu_id;
req_buf->req_queue[cur] = *req;
/* Must clear the signal before we mark req valid
* Once we mark to valid, VHM may process req and signal us
* before we perform upcall.
* because VHM can work in pulling mode without wait for upcall
*/
req_buf->req_queue[cur].valid = true;
acrn_print_request(vcpu->vcpu_id, req_buf->req_queue + cur);
/* signal VHM */
fire_vhm_interrupt();
/* pause vcpu, wait for VHM to handle the MMIO request */
atomic_store_rel_32(&vcpu->ioreq_pending, 1);
pause_vcpu(vcpu, VCPU_PAUSED);
return 0;
}
int acrn_insert_request_nowait(struct vcpu *vcpu, struct vhm_request *req)
{
struct vhm_request_buffer *req_buf;
long cur;
if (!vcpu || !req || !vcpu->vm->sw.req_buf)
return -1;
req_buf = (void *)gpa2hpa(vcpu->vm, vcpu->vm->sw.req_buf);
/* ACRN insert request to VHM and inject upcall */
cur = vcpu->vcpu_id;
req_buf->req_queue[cur] = *req;
req_buf->req_queue[cur].valid = true;
/* signal VHM and yield CPU */
fire_vhm_interrupt();
return 0;
}
static void _get_req_info_(struct vhm_request *req, int *id, char *type,
char *state, char *dir, long *addr, long *val)
{
strcpy_s(dir, 16, "NONE");
*addr = *val = 0;
*id = req->client;
switch (req->type) {
case REQ_PORTIO:
strcpy_s(type, 16, "PORTIO");
if (req->reqs.pio_request.direction == REQUEST_READ)
strcpy_s(dir, 16, "READ");
else
strcpy_s(dir, 16, "WRITE");
*addr = req->reqs.pio_request.address;
*val = req->reqs.pio_request.value;
break;
case REQ_MMIO:
case REQ_WP:
strcpy_s(type, 16, "MMIO/WP");
if (req->reqs.mmio_request.direction == REQUEST_READ)
strcpy_s(dir, 16, "READ");
else
strcpy_s(dir, 16, "WRITE");
*addr = req->reqs.mmio_request.address;
*val = req->reqs.mmio_request.value;
break;
break;
default:
strcpy_s(type, 16, "UNKNOWN");
}
switch (req->processed) {
case REQ_STATE_SUCCESS:
strcpy_s(state, 16, "SUCCESS");
break;
case REQ_STATE_PENDING:
strcpy_s(state, 16, "PENDING");
break;
case REQ_STATE_PROCESSING:
strcpy_s(state, 16, "PROCESS");
break;
case REQ_STATE_FAILED:
strcpy_s(state, 16, "FAILED");
break;
default:
strcpy_s(state, 16, "UNKNOWN");
}
}
int get_req_info(char *str, int str_max)
{
int i, len, size = str_max, client_id;
struct vhm_request_buffer *req_buf;
struct vhm_request *req;
char type[16], state[16], dir[16];
long addr, val;
struct list_head *pos;
struct vm *vm;
len = snprintf(str, size,
"\r\nVM\tVCPU\tCID\tTYPE\tSTATE\tDIR\tADDR\t\t\tVAL");
size -= len;
str += len;
spinlock_obtain(&vm_list_lock);
list_for_each(pos, &vm_list) {
vm = list_entry(pos, struct vm, list);
req_buf = (struct vhm_request_buffer *)vm->sw.req_buf;
if (req_buf) {
for (i = 0; i < VHM_REQUEST_MAX; i++) {
req = req_buf->req_queue + i;
if (req->valid) {
_get_req_info_(req, &client_id, type,
state, dir, &addr, &val);
len = snprintf(str, size,
"\r\n%d\t%d\t%d\t%s\t%s\t%s",
vm->attr.id, i, client_id, type,
state, dir);
size -= len;
str += len;
len = snprintf(str, size,
"\t0x%016llx\t0x%016llx",
addr, val);
size -= len;
str += len;
}
}
}
}
spinlock_release(&vm_list_lock);
snprintf(str, size, "\r\n");
return 0;
}