acrn-hypervisor/hypervisor/arch/x86/cpu_caps.c

562 lines
16 KiB
C

/*
* Copyright (C) 2018 Intel Corporation. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <types.h>
#include <asm/msr.h>
#include <asm/page.h>
#include <asm/cpufeatures.h>
#include <asm/cpuid.h>
#include <asm/cpu.h>
#include <asm/per_cpu.h>
#include <asm/vmx.h>
#include <asm/cpu_caps.h>
#include <errno.h>
#include <logmsg.h>
#include <asm/guest/vmcs.h>
/* TODO: add more capability per requirement */
/* APICv features */
#define VAPIC_FEATURE_VIRT_ACCESS (1U << 0U)
#define VAPIC_FEATURE_VIRT_REG (1U << 1U)
#define VAPIC_FEATURE_INTR_DELIVERY (1U << 2U)
#define VAPIC_FEATURE_TPR_SHADOW (1U << 3U)
#define VAPIC_FEATURE_POST_INTR (1U << 4U)
#define VAPIC_FEATURE_VX2APIC_MODE (1U << 5U)
/* BASIC features: must supported by the physical platform and will enabled by default */
#define APICV_BASIC_FEATURE (VAPIC_FEATURE_TPR_SHADOW | VAPIC_FEATURE_VIRT_ACCESS | VAPIC_FEATURE_VX2APIC_MODE)
/* ADVANCED features: enable them by default if the physical platform support them all, otherwise, disable them all */
#define APICV_ADVANCED_FEATURE (VAPIC_FEATURE_VIRT_REG | VAPIC_FEATURE_INTR_DELIVERY | VAPIC_FEATURE_POST_INTR)
static struct cpu_capability {
uint8_t apicv_features;
uint8_t ept_features;
uint64_t vmx_ept_vpid;
uint32_t core_caps; /* value of MSR_IA32_CORE_CAPABLITIES */
} cpu_caps;
static struct cpuinfo_x86 boot_cpu_data;
bool pcpu_has_cap(uint32_t bit)
{
uint32_t feat_idx = bit >> 5U;
uint32_t feat_bit = bit & 0x1fU;
bool ret;
if (feat_idx >= FEATURE_WORDS) {
ret = false;
} else {
ret = ((boot_cpu_data.cpuid_leaves[feat_idx] & (1U << feat_bit)) != 0U);
}
return ret;
}
bool has_monitor_cap(void)
{
bool ret = false;
if (pcpu_has_cap(X86_FEATURE_MONITOR)) {
/* don't use monitor for CPU (family: 0x6 model: 0x5c)
* in hypervisor, but still expose it to the guests and
* let them handle it correctly
*/
if (!is_apl_platform()) {
ret = true;
}
}
return ret;
}
bool disable_host_monitor_wait(void)
{
bool ret = true;
uint32_t eax = 0U, ebx = 0U, ecx = 0U, edx = 0U;
cpuid_subleaf(0x1U, 0x0U, &eax, &ebx, &ecx, &edx);
if ((ecx & CPUID_ECX_MONITOR) != 0U) {
/* According to SDM Vol4 2.1 Table 2-2,
* update on 'MSR_IA32_MISC_ENABLE_MONITOR_ENA' bit
* is not allowed if the SSE3 feature flag is set to 0.
*/
if ((ecx & CPUID_ECX_SSE3) != 0U) {
msr_write(MSR_IA32_MISC_ENABLE, (msr_read(MSR_IA32_MISC_ENABLE) &
~MSR_IA32_MISC_ENABLE_MONITOR_ENA));
/* Update cpuid_leaves of boot_cpu_data to
* refresh 'has_monitor_cap' state.
*/
if (has_monitor_cap()) {
cpuid_subleaf(CPUID_FEATURES, 0x0U, &eax, &ebx,
&boot_cpu_data.cpuid_leaves[FEAT_1_ECX],
&boot_cpu_data.cpuid_leaves[FEAT_1_EDX]);
}
} else {
ret = false;
}
}
return ret;
}
static inline bool is_fast_string_erms_supported_and_enabled(void)
{
bool ret = false;
uint64_t misc_enable = msr_read(MSR_IA32_MISC_ENABLE);
if ((misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING) == 0UL) {
pr_fatal("%s, fast string is not enabled\n", __func__);
} else {
if (!pcpu_has_cap(X86_FEATURE_ERMS)) {
pr_fatal("%s, enhanced rep movsb/stosb not supported\n", __func__);
} else {
ret = true;
}
}
return ret;
}
/*check allowed ONEs setting in vmx control*/
static bool is_ctrl_setting_allowed(uint64_t msr_val, uint32_t ctrl)
{
/*
* Intel SDM Appendix A.3
* - bitX in ctrl can be set 1
* only if bit 32+X in msr_val is 1
*/
return ((((uint32_t)(msr_val >> 32UL)) & ctrl) == ctrl);
}
bool is_apl_platform(void)
{
bool ret = false;
if ((boot_cpu_data.displayfamily == 0x6U) && (boot_cpu_data.displaymodel == 0x5cU)) {
ret = true;
}
return ret;
}
bool has_core_cap(uint32_t bit_mask)
{
return ((cpu_caps.core_caps & bit_mask) != 0U);
}
bool is_ac_enabled(void)
{
bool ac_enabled = false;
if (has_core_cap(CORE_CAP_SPLIT_LOCK) && (msr_read(MSR_TEST_CTL) & MSR_TEST_CTL_AC_SPLITLOCK)) {
ac_enabled = true;
}
return ac_enabled;
}
bool is_gp_enabled(void)
{
bool gp_enabled = false;
if (has_core_cap(CORE_CAP_UC_LOCK) && (msr_read(MSR_TEST_CTL) & MSR_TEST_CTL_GP_UCLOCK)) {
gp_enabled = true;
}
return gp_enabled;
}
static void detect_ept_cap(void)
{
uint64_t msr_val;
cpu_caps.ept_features = 0U;
/* Read primary processor based VM control. */
msr_val = msr_read(MSR_IA32_VMX_PROCBASED_CTLS);
/*
* According to SDM A.3.2 Primary Processor-Based VM-Execution Controls:
* The IA32_VMX_PROCBASED_CTLS MSR (index 482H) reports on the allowed
* settings of most of the primary processor-based VM-execution controls
* (see Section 24.6.2):
* Bits 63:32 indicate the allowed 1-settings of these controls.
* VM entry allows control X to be 1 if bit 32+X in the MSR is set to 1;
* if bit 32+X in the MSR is cleared to 0, VM entry fails if control X
* is 1.
*/
msr_val = msr_val >> 32U;
/* Check if secondary processor based VM control is available. */
if ((msr_val & VMX_PROCBASED_CTLS_SECONDARY) != 0UL) {
/* Read secondary processor based VM control. */
msr_val = msr_read(MSR_IA32_VMX_PROCBASED_CTLS2);
if (is_ctrl_setting_allowed(msr_val, VMX_PROCBASED_CTLS2_EPT)) {
cpu_caps.ept_features = 1U;
}
}
}
static void detect_apicv_cap(void)
{
uint8_t features = 0U;
uint64_t msr_val;
msr_val = msr_read(MSR_IA32_VMX_PROCBASED_CTLS);
if (is_ctrl_setting_allowed(msr_val, VMX_PROCBASED_CTLS_TPR_SHADOW)) {
features |= VAPIC_FEATURE_TPR_SHADOW;
}
msr_val = msr_read(MSR_IA32_VMX_PROCBASED_CTLS2);
if (is_ctrl_setting_allowed(msr_val, VMX_PROCBASED_CTLS2_VAPIC)) {
features |= VAPIC_FEATURE_VIRT_ACCESS;
}
if (is_ctrl_setting_allowed(msr_val, VMX_PROCBASED_CTLS2_VX2APIC)) {
features |= VAPIC_FEATURE_VX2APIC_MODE;
}
if (is_ctrl_setting_allowed(msr_val, VMX_PROCBASED_CTLS2_VAPIC_REGS)) {
features |= VAPIC_FEATURE_VIRT_REG;
}
if (is_ctrl_setting_allowed(msr_val, VMX_PROCBASED_CTLS2_VIRQ)) {
features |= VAPIC_FEATURE_INTR_DELIVERY;
}
msr_val = msr_read(MSR_IA32_VMX_PINBASED_CTLS);
if (is_ctrl_setting_allowed(msr_val, VMX_PINBASED_CTLS_POST_IRQ)) {
features |= VAPIC_FEATURE_POST_INTR;
}
cpu_caps.apicv_features = features;
vlapic_set_apicv_ops();
}
static void detect_vmx_mmu_cap(void)
{
/* Read the MSR register of EPT and VPID Capability - SDM A.10 */
cpu_caps.vmx_ept_vpid = msr_read(MSR_IA32_VMX_EPT_VPID_CAP);
}
static bool pcpu_vmx_set_32bit_addr_width(void)
{
return ((msr_read(MSR_IA32_VMX_BASIC) & MSR_IA32_VMX_BASIC_ADDR_WIDTH) != 0UL);
}
static void detect_xsave_cap(void)
{
uint32_t unused;
cpuid_subleaf(CPUID_XSAVE_FEATURES, 0x0U,
&boot_cpu_data.cpuid_leaves[FEAT_D_0_EAX],
&unused,
&unused,
&boot_cpu_data.cpuid_leaves[FEAT_D_0_EDX]);
cpuid_subleaf(CPUID_XSAVE_FEATURES, 1U,
&boot_cpu_data.cpuid_leaves[FEAT_D_1_EAX],
&unused,
&boot_cpu_data.cpuid_leaves[FEAT_D_1_ECX],
&boot_cpu_data.cpuid_leaves[FEAT_D_1_EDX]);
}
static void detect_core_caps(void)
{
if (pcpu_has_cap(X86_FEATURE_CORE_CAP)) {
cpu_caps.core_caps = (uint32_t)msr_read(MSR_IA32_CORE_CAPABILITIES);
}
}
static void detect_pcpu_cap(void)
{
detect_apicv_cap();
detect_ept_cap();
detect_vmx_mmu_cap();
detect_xsave_cap();
detect_core_caps();
}
static uint64_t get_address_mask(uint8_t limit)
{
return ((1UL << limit) - 1UL) & PAGE_MASK;
}
void init_pcpu_capabilities(void)
{
uint32_t eax, unused;
uint32_t family_id, model_id, displayfamily, displaymodel;
cpuid_subleaf(CPUID_VENDORSTRING, 0x0U,
&boot_cpu_data.cpuid_level,
&unused, &unused, &unused);
cpuid_subleaf(CPUID_FEATURES, 0x0U, &eax, &unused,
&boot_cpu_data.cpuid_leaves[FEAT_1_ECX],
&boot_cpu_data.cpuid_leaves[FEAT_1_EDX]);
/* SDM Vol.2A 3-211 states the algorithm to calculate DisplayFamily and DisplayModel */
family_id = (eax >> 8U) & 0xfU;
displayfamily = family_id;
if (family_id == 0xFU) {
displayfamily += ((eax >> 20U) & 0xffU);
}
boot_cpu_data.displayfamily = (uint8_t)displayfamily;
model_id = (eax >> 4U) & 0xfU;
displaymodel = model_id;
if ((family_id == 0x06U) || (family_id == 0xFU)) {
displaymodel += ((eax >> 16U) & 0xfU) << 4U;
}
boot_cpu_data.displaymodel = (uint8_t)displaymodel;
cpuid_subleaf(CPUID_EXTEND_FEATURE, 0x0U, &unused,
&boot_cpu_data.cpuid_leaves[FEAT_7_0_EBX],
&boot_cpu_data.cpuid_leaves[FEAT_7_0_ECX],
&boot_cpu_data.cpuid_leaves[FEAT_7_0_EDX]);
cpuid_subleaf(CPUID_MAX_EXTENDED_FUNCTION, 0x0U,
&boot_cpu_data.extended_cpuid_level,
&unused, &unused, &unused);
if (boot_cpu_data.extended_cpuid_level >= CPUID_EXTEND_FUNCTION_1) {
cpuid_subleaf(CPUID_EXTEND_FUNCTION_1, 0x0U, &unused, &unused,
&boot_cpu_data.cpuid_leaves[FEAT_8000_0001_ECX],
&boot_cpu_data.cpuid_leaves[FEAT_8000_0001_EDX]);
}
if (boot_cpu_data.extended_cpuid_level >= CPUID_EXTEND_INVA_TSC) {
cpuid_subleaf(CPUID_EXTEND_INVA_TSC, 0x0U, &eax, &unused, &unused,
&boot_cpu_data.cpuid_leaves[FEAT_8000_0007_EDX]);
}
if (boot_cpu_data.extended_cpuid_level >= CPUID_EXTEND_ADDRESS_SIZE) {
cpuid_subleaf(CPUID_EXTEND_ADDRESS_SIZE, 0x0U, &eax,
&boot_cpu_data.cpuid_leaves[FEAT_8000_0008_EBX],
&unused, &unused);
/* EAX bits 07-00: #Physical Address Bits
* bits 15-08: #Linear Address Bits
*/
boot_cpu_data.virt_bits = (uint8_t)((eax >> 8U) & 0xffU);
boot_cpu_data.phys_bits = (uint8_t)(eax & 0xffU);
boot_cpu_data.physical_address_mask =
get_address_mask(boot_cpu_data.phys_bits);
}
detect_pcpu_cap();
}
static bool is_ept_supported(void)
{
return (cpu_caps.ept_features != 0U);
}
static inline bool is_apicv_basic_feature_supported(void)
{
return ((cpu_caps.apicv_features & APICV_BASIC_FEATURE) == APICV_BASIC_FEATURE);
}
bool is_apicv_advanced_feature_supported(void)
{
return ((cpu_caps.apicv_features & APICV_ADVANCED_FEATURE) == APICV_ADVANCED_FEATURE);
}
bool pcpu_has_vmx_ept_vpid_cap(uint64_t bit_mask)
{
return ((cpu_caps.vmx_ept_vpid & bit_mask) != 0U);
}
void init_pcpu_model_name(void)
{
cpuid_subleaf(CPUID_EXTEND_FUNCTION_2, 0x0U,
(uint32_t *)(boot_cpu_data.model_name),
(uint32_t *)(&boot_cpu_data.model_name[4]),
(uint32_t *)(&boot_cpu_data.model_name[8]),
(uint32_t *)(&boot_cpu_data.model_name[12]));
cpuid_subleaf(CPUID_EXTEND_FUNCTION_3, 0x0U,
(uint32_t *)(&boot_cpu_data.model_name[16]),
(uint32_t *)(&boot_cpu_data.model_name[20]),
(uint32_t *)(&boot_cpu_data.model_name[24]),
(uint32_t *)(&boot_cpu_data.model_name[28]));
cpuid_subleaf(CPUID_EXTEND_FUNCTION_4, 0x0U,
(uint32_t *)(&boot_cpu_data.model_name[32]),
(uint32_t *)(&boot_cpu_data.model_name[36]),
(uint32_t *)(&boot_cpu_data.model_name[40]),
(uint32_t *)(&boot_cpu_data.model_name[44]));
boot_cpu_data.model_name[48] = '\0';
}
static inline bool is_vmx_disabled(void)
{
uint64_t msr_val;
bool ret = false;
/* Read Feature ControL MSR */
msr_val = msr_read(MSR_IA32_FEATURE_CONTROL);
/* Check if feature control is locked and vmx cannot be enabled */
if (((msr_val & MSR_IA32_FEATURE_CONTROL_LOCK) != 0U) &&
((msr_val & MSR_IA32_FEATURE_CONTROL_VMX_NO_SMX) == 0U)) {
ret = true;
}
return ret;
}
static inline bool pcpu_has_vmx_unrestricted_guest_cap(void)
{
return ((msr_read(MSR_IA32_VMX_MISC) & MSR_IA32_MISC_UNRESTRICTED_GUEST) != 0UL);
}
static bool is_valid_xsave_combination(void)
{
uint64_t value64 = msr_read(MSR_IA32_VMX_PROCBASED_CTLS2);
uint32_t high = (uint32_t)(value64 >> 32U); /* allowed 1-settings */
bool ret;
/* Now we only assume the platform must support XSAVE on CPU side and XSVE_XRSTR on VMX side or not,
* in this case, we could pass through CR4.OSXSAVE bit.
*/
if (pcpu_has_cap(X86_FEATURE_XSAVE)) {
ret = pcpu_has_cap(X86_FEATURE_XSAVES) && pcpu_has_cap(X86_FEATURE_COMPACTION_EXT) &&
((high & VMX_PROCBASED_CTLS2_XSVE_XRSTR) != 0U);
} else {
ret = !pcpu_has_cap(X86_FEATURE_XSAVES) && !pcpu_has_cap(X86_FEATURE_COMPACTION_EXT) &&
((high & VMX_PROCBASED_CTLS2_XSVE_XRSTR) == 0U);
}
return ret;
}
static int32_t check_vmx_mmu_cap(void)
{
int32_t ret = 0;
if (!pcpu_has_vmx_ept_vpid_cap(VMX_EPT_INVEPT)) {
printf("%s, invept not supported\n", __func__);
ret = -ENODEV;
} else if (!pcpu_has_vmx_ept_vpid_cap(VMX_VPID_INVVPID) ||
!pcpu_has_vmx_ept_vpid_cap(VMX_VPID_INVVPID_SINGLE_CONTEXT) ||
!pcpu_has_vmx_ept_vpid_cap(VMX_VPID_INVVPID_GLOBAL_CONTEXT)) {
printf("%s, invvpid not supported\n", __func__);
ret = -ENODEV;
} else if (!pcpu_has_vmx_ept_vpid_cap(VMX_EPT_2MB_PAGE)) {
printf("%s, ept not support 2MB large page\n", __func__);
ret = -ENODEV;
} else {
/* No other state currently, do nothing */
}
return ret;
}
/*
* basic hardware capability check
* we should supplement which feature/capability we must support
* here later.
*/
int32_t detect_hardware_support(void)
{
int32_t ret;
/* Long Mode (x86-64, 64-bit support) */
if (!pcpu_has_cap(X86_FEATURE_LM)) {
printf("%s, LM not supported\n", __func__);
ret = -ENODEV;
} else if ((boot_cpu_data.phys_bits == 0U) ||
(boot_cpu_data.virt_bits == 0U)) {
printf("%s, can't detect Linear/Physical Address size\n", __func__);
ret = -ENODEV;
} else if (boot_cpu_data.phys_bits > MAXIMUM_PA_WIDTH) {
printf("%s, physical-address width (%d) over maximum physical-address width (%d)\n",
__func__, boot_cpu_data.phys_bits, MAXIMUM_PA_WIDTH);
ret = -ENODEV;
} else if ((boot_cpu_data.phys_bits > 39U) && (!pcpu_has_cap(X86_FEATURE_PAGE1GB) ||
!pcpu_has_vmx_ept_vpid_cap(VMX_EPT_1GB_PAGE))) {
printf("%s, physical-address width %d over 39 bits must support 1GB large page\n",
__func__, boot_cpu_data.phys_bits);
ret = -ENODEV;
} else if (!pcpu_has_cap(X86_FEATURE_INVA_TSC)) {
/* check invariant TSC */
printf("%s, invariant TSC not supported\n", __func__);
ret = -ENODEV;
} else if (!pcpu_has_cap(X86_FEATURE_TSC_DEADLINE)) {
/* lapic TSC deadline timer */
printf("%s, TSC deadline not supported\n", __func__);
ret = -ENODEV;
} else if (!pcpu_has_cap(X86_FEATURE_NX)) {
/* Execute Disable */
printf("%s, NX not supported\n", __func__);
ret = -ENODEV;
} else if (!pcpu_has_cap(X86_FEATURE_SMEP)) {
/* Supervisor-Mode Execution Prevention */
printf("%s, SMEP not supported\n", __func__);
ret = -ENODEV;
} else if (!pcpu_has_cap(X86_FEATURE_SMAP)) {
/* Supervisor-Mode Access Prevention */
printf("%s, SMAP not supported\n", __func__);
ret = -ENODEV;
} else if (!pcpu_has_cap(X86_FEATURE_MTRR)) {
printf("%s, MTRR not supported\n", __func__);
ret = -ENODEV;
} else if (!pcpu_has_cap(X86_FEATURE_CLFLUSHOPT)) {
printf("%s, CLFLUSHOPT not supported\n", __func__);
ret = -ENODEV;
} else if (!pcpu_has_cap(X86_FEATURE_VMX)) {
printf("%s, vmx not supported\n", __func__);
ret = -ENODEV;
} else if (!is_fast_string_erms_supported_and_enabled()) {
ret = -ENODEV;
} else if (!pcpu_has_vmx_unrestricted_guest_cap()) {
printf("%s, unrestricted guest not supported\n", __func__);
ret = -ENODEV;
} else if (!is_ept_supported()) {
printf("%s, EPT not supported\n", __func__);
ret = -ENODEV;
} else if (!is_apicv_basic_feature_supported()) {
printf("%s, APICV not supported\n", __func__);
ret = -ENODEV;
} else if (boot_cpu_data.cpuid_level < 0x15U) {
printf("%s, required CPU feature not supported\n", __func__);
ret = -ENODEV;
} else if (is_vmx_disabled()) {
printf("%s, VMX can not be enabled\n", __func__);
ret = -ENODEV;
} else if (pcpu_vmx_set_32bit_addr_width()) {
printf("%s, Only support Intel 64 architecture.\n", __func__);
ret = -ENODEV;
} else if (!pcpu_has_cap(X86_FEATURE_X2APIC)) {
printf("%s, x2APIC not supported\n", __func__);
ret = -ENODEV;
} else if (!pcpu_has_cap(X86_FEATURE_POPCNT)) {
printf("%s, popcnt instruction not supported\n", __func__);
ret = -ENODEV;
} else if (!pcpu_has_cap(X86_FEATURE_SSE)) {
printf("%s, SSE not supported\n", __func__);
ret = -ENODEV;
} else if (!pcpu_has_cap(X86_FEATURE_RDRAND)) {
printf("%s, RDRAND is not supported\n", __func__);
ret = -ENODEV;
} else if (!is_valid_xsave_combination()) {
printf("%s, check XSAVE combined Capability failed\n", __func__);
ret = -ENODEV;
} else {
ret = check_vmx_mmu_cap();
}
return ret;
}
struct cpuinfo_x86 *get_pcpu_info(void)
{
return &boot_cpu_data;
}