acrn-hypervisor/hypervisor/common/sched_bvt.c

348 lines
9.4 KiB
C

/*
* Copyright (C) 2020-2022 Intel Corporation.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <list.h>
#include <asm/per_cpu.h>
#include <schedule.h>
#include <ticks.h>
#define BVT_MCU_MS 1U
/* context switch allowance */
#define BVT_CSA_MCU 5U
/*
* limit the weight range to [1, 128]. It's enough to allocate CPU resources
* for different types of vCPUs
*/
#define BVT_WEIGHT_MIN 1U
#define BVT_WEIGHT_MAX 128U
/*
* the VT (Virtual Time) ratio is proportional to 1 / weight and making the VT
* ratio an integer will ease translation between virtual time and physical
* time.
* Max (theoretical VT ratio - actual VT ratio) is
* 1 (< 1 because of integer round down).
* The minimum total VT ratios of VCPUs (at least two) is
* 2 * 8 (Min per-vcpu VT ratio)
* So the max VT ratio share error is about 1/16.
* To reduce it, we can enlarge the BVT_VT_RATIO_MIN.
* However increasing VT ratio will reduce the total time needed to overflow
* AVT. AVT is of type int64_t. The max VT ratio is 1024. MCU is 1 ms.
* So the time to overflow AVT is about:
* 2^63 / (1024 * 1000) s, i.e. ~= 9 * 10^12(s) ~= 10^8 day
* It's so large that we can ignore the AVT overflow case.
*/
#define BVT_VT_RATIO_MIN 8U
#define BVT_VT_RATIO_MAX (BVT_WEIGHT_MAX * BVT_VT_RATIO_MIN / BVT_WEIGHT_MIN)
struct sched_bvt_data {
/* keep list as the first item */
struct list_head list;
/* minimum charging unit in cycles */
uint64_t mcu;
/* a thread receives a share of cpu in proportion to its weight */
uint8_t weight;
/* virtual time advance variable, proportional to 1 / weight */
uint64_t vt_ratio;
bool warp_on;
int32_t warp_value;
uint32_t warp_limit;
uint32_t unwarp_period;
/* actual virtual time in units of mcu */
int64_t avt;
/* effective virtual time in units of mcu */
int64_t evt;
uint64_t residual;
uint64_t start_tsc;
};
/*
* @pre obj != NULL
* @pre obj->data != NULL
*/
static bool is_inqueue(struct thread_object *obj)
{
struct sched_bvt_data *data = (struct sched_bvt_data *)obj->data;
return !list_empty(&data->list);
}
/*
* @pre bvt_ctl != NULL
*/
static void update_svt(struct sched_bvt_control *bvt_ctl)
{
struct sched_bvt_data *obj_data;
struct thread_object *tmp_obj;
if (!list_empty(&bvt_ctl->runqueue)) {
tmp_obj = get_first_item(&bvt_ctl->runqueue, struct thread_object, data);
obj_data = (struct sched_bvt_data *)tmp_obj->data;
bvt_ctl->svt = obj_data->avt;
}
}
/*
* @pre obj != NULL
* @pre obj->data != NULL
* @pre obj->sched_ctl != NULL
* @pre obj->sched_ctl->priv != NULL
*/
static void runqueue_add(struct thread_object *obj)
{
struct sched_bvt_control *bvt_ctl =
(struct sched_bvt_control *)obj->sched_ctl->priv;
struct sched_bvt_data *data = (struct sched_bvt_data *)obj->data;
struct list_head *pos;
struct thread_object *iter_obj;
struct sched_bvt_data *iter_data;
/*
* the earliest evt has highest priority,
* the runqueue is ordered by priority.
*/
if (list_empty(&bvt_ctl->runqueue)) {
list_add(&data->list, &bvt_ctl->runqueue);
} else {
list_for_each(pos, &bvt_ctl->runqueue) {
iter_obj = container_of(pos, struct thread_object, data);
iter_data = (struct sched_bvt_data *)iter_obj->data;
if (iter_data->evt > data->evt) {
list_add_node(&data->list, pos->prev, pos);
break;
}
}
if (!is_inqueue(obj)) {
list_add_tail(&data->list, &bvt_ctl->runqueue);
}
}
}
/*
* @pre obj != NULL
* @pre obj->data != NULL
*/
static void runqueue_remove(struct thread_object *obj)
{
struct sched_bvt_data *data = (struct sched_bvt_data *)obj->data;
list_del_init(&data->list);
}
/*
* @brief Get the SVT (scheduler virtual time) which indicates the
* minimum AVT of any runnable threads.
* @pre obj != NULL
* @pre obj->data != NULL
* @pre obj->sched_ctl != NULL
* @pre obj->sched_ctl->priv != NULL
*/
static int64_t get_svt(struct thread_object *obj)
{
struct sched_bvt_control *bvt_ctl = (struct sched_bvt_control *)obj->sched_ctl->priv;
return bvt_ctl->svt;
}
static void sched_tick_handler(void *param)
{
struct sched_control *ctl = (struct sched_control *)param;
struct sched_bvt_control *bvt_ctl = (struct sched_bvt_control *)ctl->priv;
struct thread_object *current;
uint16_t pcpu_id = get_pcpu_id();
uint64_t rflags;
obtain_schedule_lock(pcpu_id, &rflags);
current = ctl->curr_obj;
if (current != NULL ) {
/* only non-idle thread need to consume run_countdown */
if (!is_idle_thread(current)) {
make_reschedule_request(pcpu_id);
} else {
if (!list_empty(&bvt_ctl->runqueue)) {
make_reschedule_request(pcpu_id);
}
}
}
release_schedule_lock(pcpu_id, rflags);
}
/*
*@pre: ctl->pcpu_id == get_pcpu_id()
*/
static int sched_bvt_init(struct sched_control *ctl)
{
struct sched_bvt_control *bvt_ctl = &per_cpu(sched_bvt_ctl, ctl->pcpu_id);
int ret = 0;
ASSERT(ctl->pcpu_id == get_pcpu_id(), "Init scheduler on wrong CPU!");
ctl->priv = bvt_ctl;
INIT_LIST_HEAD(&bvt_ctl->runqueue);
/* The tick_timer is periodically */
initialize_timer(&bvt_ctl->tick_timer, sched_tick_handler, ctl, 0, 0);
return ret;
}
static void sched_bvt_deinit(struct sched_control *ctl)
{
struct sched_bvt_control *bvt_ctl = (struct sched_bvt_control *)ctl->priv;
del_timer(&bvt_ctl->tick_timer);
}
static void sched_bvt_init_data(struct thread_object *obj, struct sched_params * params)
{
struct sched_bvt_data *data;
data = (struct sched_bvt_data *)obj->data;
INIT_LIST_HEAD(&data->list);
data->mcu = BVT_MCU_MS * TICKS_PER_MS;
data->weight = clamp(params->bvt_weight, BVT_WEIGHT_MIN, BVT_WEIGHT_MAX);
data->warp_value = params->bvt_warp_value;
data->warp_limit = params->bvt_warp_limit;
data->unwarp_period = params->bvt_unwarp_period;
data->warp_on = false; /* warp disabled by default */
data->vt_ratio = BVT_VT_RATIO_MAX / data->weight;
data->residual = 0U;
}
static void sched_bvt_suspend(struct sched_control *ctl)
{
sched_bvt_deinit(ctl);
}
static uint64_t v2p(uint64_t virt_time, uint64_t ratio)
{
return (uint64_t)(virt_time / ratio);
}
static uint64_t p2v(uint64_t phy_time, uint64_t ratio)
{
return (uint64_t)(phy_time * ratio);
}
static void update_vt(struct thread_object *obj)
{
struct sched_bvt_data *data;
uint64_t now_tsc = cpu_ticks();
uint64_t v_delta, delta_mcu = 0U;
data = (struct sched_bvt_data *)obj->data;
/* update current thread's avt and evt */
if (now_tsc > data->start_tsc) {
v_delta = p2v(now_tsc - data->start_tsc, data->vt_ratio) + data->residual;
delta_mcu = (uint64_t)(v_delta / data->mcu);
data->residual = v_delta % data->mcu;
}
data->avt += delta_mcu;
/* TODO: evt = avt - (warp ? warpback : 0U) */
data->evt = data->avt;
if (is_inqueue(obj)) {
runqueue_remove(obj);
runqueue_add(obj);
}
}
static struct thread_object *sched_bvt_pick_next(struct sched_control *ctl)
{
struct sched_bvt_control *bvt_ctl = (struct sched_bvt_control *)ctl->priv;
struct thread_object *first_obj = NULL, *second_obj = NULL;
struct sched_bvt_data *first_data = NULL, *second_data = NULL;
struct list_head *first, *sec;
struct thread_object *next = NULL;
struct thread_object *current = ctl->curr_obj;
uint64_t now_tsc = cpu_ticks();
uint64_t delta_mcu = 0U;
uint64_t tick_period = BVT_MCU_MS * TICKS_PER_MS;
uint64_t run_countdown;
if (!is_idle_thread(current)) {
update_vt(current);
}
/* always align the svt with the avt of the first thread object in runqueue.*/
update_svt(bvt_ctl);
del_timer(&bvt_ctl->tick_timer);
if (!list_empty(&bvt_ctl->runqueue)) {
first = bvt_ctl->runqueue.next;
sec = (first->next == &bvt_ctl->runqueue) ? NULL : first->next;
first_obj = container_of(first, struct thread_object, data);
first_data = (struct sched_bvt_data *)first_obj->data;
/* The run_countdown is used to describe how may mcu the next thread
* can run for. A one-shot timer is set to expire at
* current time + run_countdown. The next thread can run until the
* timer interrupts. But when there is only one object
* in runqueue, it can run forever. so, no timer is set.
*/
if (sec != NULL) {
second_obj = container_of(sec, struct thread_object, data);
second_data = (struct sched_bvt_data *)second_obj->data;
delta_mcu = second_data->evt - first_data->evt;
run_countdown = v2p(delta_mcu, first_data->vt_ratio) + BVT_CSA_MCU;
} else {
run_countdown = UINT64_MAX;
}
first_data->start_tsc = now_tsc;
next = first_obj;
if (run_countdown != UINT64_MAX) {
update_timer(&bvt_ctl->tick_timer, cpu_ticks() + run_countdown * tick_period, 0);
(void)add_timer(&bvt_ctl->tick_timer);
}
} else {
next = &get_cpu_var(idle);
}
return next;
}
static void sched_bvt_sleep(struct thread_object *obj)
{
runqueue_remove(obj);
}
static void sched_bvt_wake(struct thread_object *obj)
{
struct sched_bvt_data *data;
int64_t svt, threshold;
data = (struct sched_bvt_data *)obj->data;
svt = get_svt(obj);
threshold = svt - BVT_CSA_MCU;
/* adjusting AVT for a thread after a long sleep */
data->avt = (data->avt > threshold) ? data->avt : svt;
/* TODO: evt = avt - (warp ? warpback : 0U) */
data->evt = data->avt;
/* add to runqueue in order */
runqueue_add(obj);
}
struct acrn_scheduler sched_bvt = {
.name = "sched_bvt",
.init = sched_bvt_init,
.init_data = sched_bvt_init_data,
.pick_next = sched_bvt_pick_next,
.sleep = sched_bvt_sleep,
.wake = sched_bvt_wake,
.deinit = sched_bvt_deinit,
/* Now suspend is just to do del_timer and add_timer will be delayed to
* shedule after resume.
* So no need to add .resume now.
*/
.suspend = sched_bvt_suspend,
};