acrn-hypervisor/hypervisor/arch/x86/pagetable.c

750 lines
26 KiB
C

/*
* Copyright (C) 2018-2024 Intel Corporation.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <types.h>
#include <util.h>
#include <acrn_hv_defs.h>
#include <asm/page.h>
#include <asm/mmu.h>
#include <logmsg.h>
/**
* @addtogroup hwmgmt_page
*
* @{
*/
/**
* @file
* @brief Implementation page table management.
*
* This file implements the external APIs to establish, modify, delete, or look for the mapping information. It also
* defines some helper functions to implement the features that are commonly used in this file.
*
*/
#define DBG_LEVEL_MMU 6U
/**
* @brief Host physical address of the sanitized page.
*
* The sanitized page is used to mitigate l1tf. This variable is used to store the host physical address of the
* sanitized page.
*/
static uint64_t sanitized_page_hpa;
static void sanitize_pte_entry(uint64_t *ptep, const struct pgtable *table)
{
set_pgentry(ptep, sanitized_page_hpa, table);
}
static void sanitize_pte(uint64_t *pt_page, const struct pgtable *table)
{
uint64_t i;
for (i = 0UL; i < PTRS_PER_PTE; i++) {
sanitize_pte_entry(pt_page + i, table);
}
}
/**
* @brief Initializes a sanitized page.
*
* This function is responsible for initializing a sanitized page. It sets the page table entries in this sanitized page
* to point to the host physical address of the sanitized page itself.
*
* The static variable 'sanitized_page_hpa' will be set and the `sanitized_page` will be initialized.
*
* @param[out] sanitized_page The page to be sanitized.
* @param[in] hpa The host physical address that the page table entries in the sanitized page will point to.
*
* @return None
*
* @pre sanitized_page != NULL
* @pre ((uint64_t)sanitized_page & (PAGE_SIZE - 1)) == 0x0U
* @pre hpa != 0U
* @pre (hpa & (PAGE_SIZE - 1)) == 0x0U
*
* @post N/A
*/
void init_sanitized_page(uint64_t *sanitized_page, uint64_t hpa)
{
uint64_t i;
sanitized_page_hpa = hpa;
/* set ptep in sanitized_page point to itself */
for (i = 0UL; i < PTRS_PER_PTE; i++) {
*(sanitized_page + i) = sanitized_page_hpa;
}
}
static void try_to_free_pgtable_page(const struct pgtable *table,
uint64_t *pde, uint64_t *pt_page, uint32_t type)
{
if (type == MR_DEL) {
uint64_t index;
for (index = 0UL; index < PTRS_PER_PTE; index++) {
uint64_t *pte = pt_page + index;
if (pgentry_present(table, (*pte))) {
break;
}
}
if (index == PTRS_PER_PTE) {
free_page(table->pool, (void *)pt_page);
sanitize_pte_entry(pde, table);
}
}
}
/*
* Split a large page table into next level page table.
*
* @pre: level could only IA32E_PDPT or IA32E_PD
*/
static void split_large_page(uint64_t *pte, enum _page_table_level level,
__unused uint64_t vaddr, const struct pgtable *table)
{
uint64_t *pbase;
uint64_t ref_paddr, paddr, paddrinc;
uint64_t i, ref_prot;
switch (level) {
case IA32E_PDPT:
ref_paddr = (*pte) & PDPTE_PFN_MASK;
paddrinc = PDE_SIZE;
ref_prot = (*pte) & ~PDPTE_PFN_MASK;
break;
default: /* IA32E_PD */
ref_paddr = (*pte) & PDE_PFN_MASK;
paddrinc = PTE_SIZE;
ref_prot = (*pte) & ~PDE_PFN_MASK;
ref_prot &= ~PAGE_PSE;
table->recover_exe_right(&ref_prot);
break;
}
pbase = (uint64_t *)alloc_page(table->pool);
dev_dbg(DBG_LEVEL_MMU, "%s, paddr: 0x%lx, pbase: 0x%lx\n", __func__, ref_paddr, pbase);
paddr = ref_paddr;
for (i = 0UL; i < PTRS_PER_PTE; i++) {
set_pgentry(pbase + i, paddr | ref_prot, table);
paddr += paddrinc;
}
ref_prot = table->default_access_right;
set_pgentry(pte, hva2hpa((void *)pbase) | ref_prot, table);
/* TODO: flush the TLB */
}
static inline void local_modify_or_del_pte(uint64_t *pte,
uint64_t prot_set, uint64_t prot_clr, uint32_t type, const struct pgtable *table)
{
if (type == MR_MODIFY) {
uint64_t new_pte = *pte;
new_pte &= ~prot_clr;
new_pte |= prot_set;
set_pgentry(pte, new_pte, table);
} else {
sanitize_pte_entry(pte, table);
}
}
/*
* pgentry may means pml4e/pdpte/pde
*/
static inline void construct_pgentry(uint64_t *pde, void *pd_page, uint64_t prot, const struct pgtable *table)
{
sanitize_pte((uint64_t *)pd_page, table);
set_pgentry(pde, hva2hpa(pd_page) | prot, table);
}
/*
* In PT level,
* type: MR_MODIFY
* modify [vaddr_start, vaddr_end) memory type or page access right.
* type: MR_DEL
* delete [vaddr_start, vaddr_end) MT PT mapping
*/
static void modify_or_del_pte(uint64_t *pde, uint64_t vaddr_start, uint64_t vaddr_end,
uint64_t prot_set, uint64_t prot_clr, const struct pgtable *table, uint32_t type)
{
uint64_t *pt_page = pde_page_vaddr(*pde);
uint64_t vaddr = vaddr_start;
uint64_t index = pte_index(vaddr);
dev_dbg(DBG_LEVEL_MMU, "%s, vaddr: [0x%lx - 0x%lx]\n", __func__, vaddr, vaddr_end);
for (; index < PTRS_PER_PTE; index++) {
uint64_t *pte = pt_page + index;
if (!pgentry_present(table, (*pte))) {
/*suppress warning message for low memory (< 1MBytes),as service VM
* will update MTTR attributes for this region by default whether it
* is present or not.
*/
if ((type == MR_MODIFY) && (vaddr >= MEM_1M)) {
pr_warn("%s, vaddr: 0x%lx pte is not present.\n", __func__, vaddr);
}
} else {
local_modify_or_del_pte(pte, prot_set, prot_clr, type, table);
}
vaddr += PTE_SIZE;
if (vaddr >= vaddr_end) {
break;
}
}
try_to_free_pgtable_page(table, pde, pt_page, type);
}
/*
* In PD level,
* type: MR_MODIFY
* modify [vaddr_start, vaddr_end) memory type or page access right.
* type: MR_DEL
* delete [vaddr_start, vaddr_end) MT PT mapping
*/
static void modify_or_del_pde(uint64_t *pdpte, uint64_t vaddr_start, uint64_t vaddr_end,
uint64_t prot_set, uint64_t prot_clr, const struct pgtable *table, uint32_t type)
{
uint64_t *pd_page = pdpte_page_vaddr(*pdpte);
uint64_t vaddr = vaddr_start;
uint64_t index = pde_index(vaddr);
dev_dbg(DBG_LEVEL_MMU, "%s, vaddr: [0x%lx - 0x%lx]\n", __func__, vaddr, vaddr_end);
for (; index < PTRS_PER_PDE; index++) {
uint64_t *pde = pd_page + index;
uint64_t vaddr_next = (vaddr & PDE_MASK) + PDE_SIZE;
if (!pgentry_present(table, (*pde))) {
if (type == MR_MODIFY) {
pr_warn("%s, addr: 0x%lx pde is not present.\n", __func__, vaddr);
}
} else {
if (pde_large(*pde) != 0UL) {
if ((vaddr_next > vaddr_end) || (!mem_aligned_check(vaddr, PDE_SIZE))) {
split_large_page(pde, IA32E_PD, vaddr, table);
} else {
local_modify_or_del_pte(pde, prot_set, prot_clr, type, table);
if (vaddr_next < vaddr_end) {
vaddr = vaddr_next;
continue;
}
break; /* done */
}
}
modify_or_del_pte(pde, vaddr, vaddr_end, prot_set, prot_clr, table, type);
}
if (vaddr_next >= vaddr_end) {
break; /* done */
}
vaddr = vaddr_next;
}
try_to_free_pgtable_page(table, pdpte, pd_page, type);
}
/*
* In PDPT level,
* type: MR_MODIFY
* modify [vaddr_start, vaddr_end) memory type or page access right.
* type: MR_DEL
* delete [vaddr_start, vaddr_end) MT PT mapping
*/
static void modify_or_del_pdpte(const uint64_t *pml4e, uint64_t vaddr_start, uint64_t vaddr_end,
uint64_t prot_set, uint64_t prot_clr, const struct pgtable *table, uint32_t type)
{
uint64_t *pdpt_page = pml4e_page_vaddr(*pml4e);
uint64_t vaddr = vaddr_start;
uint64_t index = pdpte_index(vaddr);
dev_dbg(DBG_LEVEL_MMU, "%s, vaddr: [0x%lx - 0x%lx]\n", __func__, vaddr, vaddr_end);
for (; index < PTRS_PER_PDPTE; index++) {
uint64_t *pdpte = pdpt_page + index;
uint64_t vaddr_next = (vaddr & PDPTE_MASK) + PDPTE_SIZE;
if (!pgentry_present(table, (*pdpte))) {
if (type == MR_MODIFY) {
pr_warn("%s, vaddr: 0x%lx pdpte is not present.\n", __func__, vaddr);
}
} else {
if (pdpte_large(*pdpte) != 0UL) {
if ((vaddr_next > vaddr_end) ||
(!mem_aligned_check(vaddr, PDPTE_SIZE))) {
split_large_page(pdpte, IA32E_PDPT, vaddr, table);
} else {
local_modify_or_del_pte(pdpte, prot_set, prot_clr, type, table);
if (vaddr_next < vaddr_end) {
vaddr = vaddr_next;
continue;
}
break; /* done */
}
}
modify_or_del_pde(pdpte, vaddr, vaddr_end, prot_set, prot_clr, table, type);
}
if (vaddr_next >= vaddr_end) {
break; /* done */
}
vaddr = vaddr_next;
}
}
/**
* @brief Modify or delete the mappings associated with the specified address range.
*
* This function modifies the properties of an existing mapping or deletes it entirely from the page table. The input
* address range is specified by [vaddr_base, vaddr_base + size). It is used when changing the access permissions of a
* memory region or when freeing a previously mapped region. This operation is critical for dynamic memory management,
* allowing the system to adapt to changes in memory usage patterns or to reclaim resources.
*
* For error case behaviors:
* - If the 'type' is MR_MODIFY and any page referenced by the PML4E in the specified address range is not present, the
* function asserts that the operation is invalid.
* For normal case behaviors(when the error case conditions are not satisfied):
* - If any page referenced by the PDPTE/PDE/PTE in the specified address range is not present, there is no change to
* the corresponding mapping and it continues the operation.
* - If any PDPTE/PDE in the specified address range maps a large page and the large page address exceeds the specified
* address range, the function splits the large page into next level page to allow for the modification or deletion of
* the mappings and the execute right will be recovered by the callback function table->recover_exe_right() when a 2MB
* page is split to 4KB pages.
* - If the 'type' is MR_MODIFY, the function modifies the properties of the existing mapping to match the specified
* properties.
* - If the 'type' is MR_DEL, the function will set corresponding page table entries to point to the sanitized page.
*
* @param[inout] pml4_page A pointer to the specified PML4 table.
* @param[in] vaddr_base The specified input address determining the start of the input address range whose mapping
* information is to be updated.
* For hypervisor's MMU, it is the host virtual address.
* For each VM's EPT, it is the guest physical address.
* @param[in] size The size of the specified input address range whose mapping information is to be updated.
* @param[in] prot_set Bit positions representing the specified properties which need to be set.
* Bits specified by prot_clr are cleared before each bit specified by prot_set is set to 1.
* @param[in] prot_clr Bit positions representing the specified properties which need to be cleared.
* Bits specified by prot_clr are cleared before each bit specified by prot_set is set to 1.
* @param[in] table A pointer to the struct pgtable containing the information of the specified memory operations.
* @param[in] type The type of operation to perform (MR_MODIFY or MR_DEL).
*
* @return None
*
* @pre pml4_page != NULL
* @pre table != NULL
* @pre (type == MR_MODIFY) || (type == MR_DEL)
* @pre For x86 hypervisor, the following conditions shall be met if "type == MR_MODIFY".
* - (prot_set & ~(PAGE_RW | PAGE_USER | PAGE_PWT | PAGE_PCD | PAGE_ACCESSED | PAGE_DIRTY | PAGE_PSE | PAGE_GLOBAL
* | PAGE_PAT_LARGE | PAGE_NX) == 0)
* - (prot_clr & ~(PAGE_RW | PAGE_USER | PAGE_PWT | PAGE_PCD | PAGE_ACCESSED | PAGE_DIRTY | PAGE_PSE | PAGE_GLOBAL
* | PAGE_PAT_LARGE | PAGE_NX) == 0)
* @pre For the VM EPT mappings, the following conditions shall be met if "type == MR_MODIFY".
* - (prot_set & ~(EPT_RD | EPT_WR | EPT_EXE | EPT_MT_MASK) == 0)
* - (prot_set & EPT_MT_MASK) == EPT_UNCACHED || (prot_set & EPT_MT_MASK) == EPT_WC ||
* (prot_set & EPT_MT_MASK) == EPT_WT || (prot_set & EPT_MT_MASK) == EPT_WP || (prot_set & EPT_MT_MASK) == EPT_WB
* - (prot_clr & ~(EPT_RD | EPT_WR | EPT_EXE | EPT_MT_MASK) == 0)
* - (prot_clr & EPT_MT_MASK) == EPT_UNCACHED || (prot_clr & EPT_MT_MASK) == EPT_WC ||
* (prot_clr & EPT_MT_MASK) == EPT_WT || (prot_clr & EPT_MT_MASK) == EPT_WP || (prot_clr & EPT_MT_MASK) == EPT_WB
*
* @post N/A
*
* @remark N/A
*/
void pgtable_modify_or_del_map(uint64_t *pml4_page, uint64_t vaddr_base, uint64_t size,
uint64_t prot_set, uint64_t prot_clr, const struct pgtable *table, uint32_t type)
{
uint64_t vaddr = round_page_up(vaddr_base);
uint64_t vaddr_next, vaddr_end;
uint64_t *pml4e;
vaddr_end = vaddr + round_page_down(size);
dev_dbg(DBG_LEVEL_MMU, "%s, vaddr: 0x%lx, size: 0x%lx\n",
__func__, vaddr, size);
while (vaddr < vaddr_end) {
vaddr_next = (vaddr & PML4E_MASK) + PML4E_SIZE;
pml4e = pml4e_offset(pml4_page, vaddr);
if ((!pgentry_present(table, (*pml4e))) && (type == MR_MODIFY)) {
ASSERT(false, "invalid op, pml4e not present");
} else {
modify_or_del_pdpte(pml4e, vaddr, vaddr_end, prot_set, prot_clr, table, type);
vaddr = vaddr_next;
}
}
}
/*
* In PT level,
* add [vaddr_start, vaddr_end) to [paddr_base, ...) MT PT mapping
*/
static void add_pte(const uint64_t *pde, uint64_t paddr_start, uint64_t vaddr_start, uint64_t vaddr_end,
uint64_t prot, const struct pgtable *table)
{
uint64_t *pt_page = pde_page_vaddr(*pde);
uint64_t vaddr = vaddr_start;
uint64_t paddr = paddr_start;
uint64_t index = pte_index(vaddr);
dev_dbg(DBG_LEVEL_MMU, "%s, paddr: 0x%lx, vaddr: [0x%lx - 0x%lx]\n",
__func__, paddr, vaddr_start, vaddr_end);
for (; index < PTRS_PER_PTE; index++) {
uint64_t *pte = pt_page + index;
if (pgentry_present(table, (*pte))) {
pr_fatal("%s, pte 0x%lx is already present!\n", __func__, vaddr);
} else {
set_pgentry(pte, paddr | prot, table);
}
paddr += PTE_SIZE;
vaddr += PTE_SIZE;
if (vaddr >= vaddr_end) {
break; /* done */
}
}
}
/*
* In PD level,
* add [vaddr_start, vaddr_end) to [paddr_base, ...) MT PT mapping
*/
static void add_pde(const uint64_t *pdpte, uint64_t paddr_start, uint64_t vaddr_start, uint64_t vaddr_end,
uint64_t prot, const struct pgtable *table)
{
uint64_t *pd_page = pdpte_page_vaddr(*pdpte);
uint64_t vaddr = vaddr_start;
uint64_t paddr = paddr_start;
uint64_t index = pde_index(vaddr);
uint64_t local_prot = prot;
dev_dbg(DBG_LEVEL_MMU, "%s, paddr: 0x%lx, vaddr: [0x%lx - 0x%lx]\n",
__func__, paddr, vaddr, vaddr_end);
for (; index < PTRS_PER_PDE; index++) {
uint64_t *pde = pd_page + index;
uint64_t vaddr_next = (vaddr & PDE_MASK) + PDE_SIZE;
if (pde_large(*pde) != 0UL) {
pr_fatal("%s, pde 0x%lx is already present!\n", __func__, vaddr);
} else {
if (!pgentry_present(table, (*pde))) {
if (table->large_page_support(IA32E_PD, prot) &&
mem_aligned_check(paddr, PDE_SIZE) &&
mem_aligned_check(vaddr, PDE_SIZE) &&
(vaddr_next <= vaddr_end)) {
table->tweak_exe_right(&local_prot);
set_pgentry(pde, paddr | (local_prot | PAGE_PSE), table);
if (vaddr_next < vaddr_end) {
paddr += (vaddr_next - vaddr);
vaddr = vaddr_next;
continue;
}
break; /* done */
} else {
void *pt_page = alloc_page(table->pool);
construct_pgentry(pde, pt_page, table->default_access_right, table);
}
}
add_pte(pde, paddr, vaddr, vaddr_end, prot, table);
}
if (vaddr_next >= vaddr_end) {
break; /* done */
}
paddr += (vaddr_next - vaddr);
vaddr = vaddr_next;
}
}
/*
* In PDPT level,
* add [vaddr_start, vaddr_end) to [paddr_base, ...) MT PT mapping
*/
static void add_pdpte(const uint64_t *pml4e, uint64_t paddr_start, uint64_t vaddr_start, uint64_t vaddr_end,
uint64_t prot, const struct pgtable *table)
{
uint64_t *pdpt_page = pml4e_page_vaddr(*pml4e);
uint64_t vaddr = vaddr_start;
uint64_t paddr = paddr_start;
uint64_t index = pdpte_index(vaddr);
uint64_t local_prot = prot;
dev_dbg(DBG_LEVEL_MMU, "%s, paddr: 0x%lx, vaddr: [0x%lx - 0x%lx]\n", __func__, paddr, vaddr, vaddr_end);
for (; index < PTRS_PER_PDPTE; index++) {
uint64_t *pdpte = pdpt_page + index;
uint64_t vaddr_next = (vaddr & PDPTE_MASK) + PDPTE_SIZE;
if (pdpte_large(*pdpte) != 0UL) {
pr_fatal("%s, pdpte 0x%lx is already present!\n", __func__, vaddr);
} else {
if (!pgentry_present(table, (*pdpte))) {
if (table->large_page_support(IA32E_PDPT, prot) &&
mem_aligned_check(paddr, PDPTE_SIZE) &&
mem_aligned_check(vaddr, PDPTE_SIZE) &&
(vaddr_next <= vaddr_end)) {
table->tweak_exe_right(&local_prot);
set_pgentry(pdpte, paddr | (local_prot | PAGE_PSE), table);
if (vaddr_next < vaddr_end) {
paddr += (vaddr_next - vaddr);
vaddr = vaddr_next;
continue;
}
break; /* done */
} else {
void *pd_page = alloc_page(table->pool);
construct_pgentry(pdpte, pd_page, table->default_access_right, table);
}
}
add_pde(pdpte, paddr, vaddr, vaddr_end, prot, table);
}
if (vaddr_next >= vaddr_end) {
break; /* done */
}
paddr += (vaddr_next - vaddr);
vaddr = vaddr_next;
}
}
/**
* @brief Add new page table mappings.
*
* This function maps a virtual address range specified by [vaddr_base, vaddr_base + size) to a physical address range
* starting from 'paddr_base'.
*
* - If any subrange within [vaddr_base, vaddr_base + size) is already mapped, there is no change to the corresponding
* mapping and it continues the operation.
* - When a new 1GB or 2MB mapping is established, the callback function table->tweak_exe_right() is invoked to tweak
* the execution bit.
* - When a new page table referenced by a new PDPTE/PDE is created, all entries in the page table are initialized to
* point to the sanitized page by default.
* - Finally, the new mappings are established and initialized according to the specified address range and properties.
*
* @param[inout] pml4_page A pointer to the specified PML4 table hierarchy.
* @param[in] paddr_base The specified physical address determining the start of the physical memory region.
* It is the host physical address.
* @param[in] vaddr_base The specified input address determining the start of the input address space.
* For hypervisor's MMU, it is the host virtual address.
* For each VM's EPT, it is the guest physical address.
* @param[in] size The size of the specified input address space.
* @param[in] prot Bit positions representing the specified properties which need to be set.
* @param[in] table A pointer to the struct pgtable containing the information of the specified memory operations.
*
* @return None
*
* @pre pml4_page != NULL
* @pre Any subrange within [vaddr_base, vaddr_base + size) shall already be unmapped.
* @pre For x86 hypervisor mapping, the following condition shall be met.
* - prot & ~(PAGE_PRESENT| PAGE_RW | PAGE_USER | PAGE_PWT | PAGE_PCD | PAGE_ACCESSED | PAGE_DIRTY | PAGE_PSE |
* PAGE_GLOBAL | PAGE_PAT_LARGE | PAGE_NX) == 0
* @pre For VM EPT mapping, the following conditions shall be met.
* - prot & ~(EPT_RD | EPT_WR | EPT_EXE | EPT_MT_MASK | EPT_IGNORE_PAT) == 0
* - (prot & EPT_MT_MASK) == EPT_UNCACHED || (prot & EPT_MT_MASK) == EPT_WC || (prot & EPT_MT_MASK) == EPT_WT ||
* (prot & EPT_MT_MASK) == EPT_WP || (prot & EPT_MT_MASK) == EPT_WB
* @pre table != NULL
*
* @post N/A
*
* @remark N/A
*/
void pgtable_add_map(uint64_t *pml4_page, uint64_t paddr_base, uint64_t vaddr_base,
uint64_t size, uint64_t prot, const struct pgtable *table)
{
uint64_t vaddr, vaddr_next, vaddr_end;
uint64_t paddr;
uint64_t *pml4e;
dev_dbg(DBG_LEVEL_MMU, "%s, paddr 0x%lx, vaddr 0x%lx, size 0x%lx\n", __func__, paddr_base, vaddr_base, size);
/* align address to page size*/
vaddr = round_page_up(vaddr_base);
paddr = round_page_up(paddr_base);
vaddr_end = vaddr + round_page_down(size);
while (vaddr < vaddr_end) {
vaddr_next = (vaddr & PML4E_MASK) + PML4E_SIZE;
pml4e = pml4e_offset(pml4_page, vaddr);
if (!pgentry_present(table, (*pml4e))) {
void *pdpt_page = alloc_page(table->pool);
construct_pgentry(pml4e, pdpt_page, table->default_access_right, table);
}
add_pdpte(pml4e, paddr, vaddr, vaddr_end, prot, table);
paddr += (vaddr_next - vaddr);
vaddr = vaddr_next;
}
}
/**
* @brief Create a new root page table.
*
* This function initializes and returns a new root page table. It is typically used during the setup of a new execution
* context, such as initializing a hypervisor PML4 table or creating a virtual machine. The root page table is essential
* for defining the virtual memory layout for the context.
*
* It creates a new root page table and every entries in the page table are initialized to point to the sanitized page.
* Finally, the function returns the root page table pointer.
*
* @param[in] table A pointer to the struct pgtable containing the information of the specified memory operations.
*
* @return A pointer to the newly created root page table.
*
* @pre table != NULL
*
* @post N/A
*/
void *pgtable_create_root(const struct pgtable *table)
{
uint64_t *page = (uint64_t *)alloc_page(table->pool);
sanitize_pte(page, table);
return page;
}
/**
* @brief Create a root page table for Secure World.
*
* This function initializes a new root page table for Secure World. It is intended to be used during the initialization
* phase of Trusty, setting up isolated memory regions for secure execution. Secure world can access Normal World's
* memory, but Normal World cannot access Secure World's memory. The PML4T/PDPT for Secure World are separated from
* Normal World. PDT/PT are shared in both Secure World's EPT and Normal World's EPT. So this function copies the PDPTEs
* from the Normal World to the Secure World.
*
* - It creates a new root page table and every entries are initialized to point to the sanitized page by default.
* - The access right specified by prot_clr is cleared for Secure World PDPTEs.
* - Finally, the function returns the new root page table pointer.
*
* @param[in] table A pointer to the struct pgtable containing the information of the specified memory operations.
* @param[in] nworld_pml4_page A pointer to pml4 table hierarchy in Normal World.
* @param[in] prot_table_present Mask indicating the page referenced is present.
* @param[in] prot_clr Bit positions representing the specified properties which need to be cleared.
*
* @return A pointer to the newly created root page table for Secure World.
*
* @pre table != NULL
* @pre nworld_pml4_page != NULL
*
* @post N/A
*/
void *pgtable_create_trusty_root(const struct pgtable *table,
void *nworld_pml4_page, uint64_t prot_table_present, uint64_t prot_clr)
{
uint16_t i;
uint64_t pdpte, *dest_pdpte_p, *src_pdpte_p;
uint64_t nworld_pml4e, sworld_pml4e;
void *sub_table_addr, *pml4_base;
/* Copy PDPT entries from Normal world to Secure world
* Secure world can access Normal World's memory,
* but Normal World can not access Secure World's memory.
* The PML4/PDPT for Secure world are separated from
* Normal World. PD/PT are shared in both Secure world's EPT
* and Normal World's EPT
*/
pml4_base = pgtable_create_root(table);
/* The trusty memory is remapped to guest physical address
* of gpa_rebased to gpa_rebased + size
*/
sub_table_addr = alloc_page(table->pool);
sworld_pml4e = hva2hpa(sub_table_addr) | prot_table_present;
set_pgentry((uint64_t *)pml4_base, sworld_pml4e, table);
nworld_pml4e = get_pgentry((uint64_t *)nworld_pml4_page);
/*
* copy PTPDEs from normal world EPT to secure world EPT,
* and remove execute access attribute in these entries
*/
dest_pdpte_p = pml4e_page_vaddr(sworld_pml4e);
src_pdpte_p = pml4e_page_vaddr(nworld_pml4e);
for (i = 0U; i < (uint16_t)(PTRS_PER_PDPTE - 1UL); i++) {
pdpte = get_pgentry(src_pdpte_p);
if ((pdpte & prot_table_present) != 0UL) {
pdpte &= ~prot_clr;
set_pgentry(dest_pdpte_p, pdpte, table);
}
src_pdpte_p++;
dest_pdpte_p++;
}
return pml4_base;
}
/**
* @brief Look for the paging-structure entry that contains the mapping information for the specified input address.
*
* This function looks for the paging-structure entry that contains the mapping information for the specified input
* address of the translation process. It is used to search the page table hierarchy for the entry corresponding to the
* given virtual address. The function traverses the page table hierarchy from the PML4 down to the appropriate page
* table level, returning the entry if found.
*
* - If specified address is mapped in the page table hierarchy, it will return a pointer to the page table entry that
* maps the specified address.
* - If the specified address is not mapped in the page table hierarchy, it will return NULL.
*
* @param[in] pml4_page A pointer to the specified PML4 table hierarchy.
* @param[in] addr The specified input address whose mapping information is to be searched.
* For hypervisor's MMU, it is the host virtual address.
* For each VM's EPT, it is the guest physical address.
* @param[out] pg_size A pointer to the size of the page controlled by the returned paging-structure entry.
* @param[in] table A pointer to the struct pgtable which provides the page pool and callback functions to be used when
* creating the new page.
*
* @return A pointer to the paging-structure entry that maps the specified input address.
*
* @retval non-NULL There is a paging-structure entry that contains the mapping information for the specified input
* address.
* @retval NULL There is no paging-structure entry that contains the mapping information for the specified input
* address.
*
* @pre pml4_page != NULL
* @pre pg_size != NULL
* @pre table != NULL
*
* @post N/A
*
* @remark N/A
*/
const uint64_t *pgtable_lookup_entry(uint64_t *pml4_page, uint64_t addr, uint64_t *pg_size, const struct pgtable *table)
{
const uint64_t *pret = NULL;
bool present = true;
uint64_t *pml4e, *pdpte, *pde, *pte;
pml4e = pml4e_offset(pml4_page, addr);
present = pgentry_present(table, (*pml4e));
if (present) {
pdpte = pdpte_offset(pml4e, addr);
present = pgentry_present(table, (*pdpte));
if (present) {
if (pdpte_large(*pdpte) != 0UL) {
*pg_size = PDPTE_SIZE;
pret = pdpte;
} else {
pde = pde_offset(pdpte, addr);
present = pgentry_present(table, (*pde));
if (present) {
if (pde_large(*pde) != 0UL) {
*pg_size = PDE_SIZE;
pret = pde;
} else {
pte = pte_offset(pde, addr);
present = pgentry_present(table, (*pte));
if (present) {
*pg_size = PTE_SIZE;
pret = pte;
}
}
}
}
}
}
return pret;
}
/**
* @}
*/