acrn-hypervisor/hypervisor/arch/x86/e820.c

315 lines
8.6 KiB
C

/*
* Copyright (C) 2018-2022 Intel Corporation.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <types.h>
#include <acrn_hv_defs.h>
#include <asm/page.h>
#include <asm/e820.h>
#include <asm/mmu.h>
#include <boot.h>
#include <efi_mmap.h>
#include <logmsg.h>
#include <asm/guest/ept.h>
/*
* e820.c contains the related e820 operations; like HV to get memory info for its MMU setup;
* and hide HV memory from Service VM...
*/
static uint32_t hv_e820_entries_nr;
static uint64_t hv_e820_ram_size;
/* Describe the memory layout the hypervisor uses */
static struct e820_entry hv_e820[E820_MAX_ENTRIES];
#define DBG_LEVEL_E820 6U
/*
* @brief reserve some RAM, hide it from Service VM, return its start address
*
* e820_alloc_memory requires 4k alignment, so size_arg will be converted
* in the function.
*
* @param size_arg Amount of memory to be found and marked reserved
* @param max_addr Maximum address below which memory is to be identified
*
* @pre hv_e820_entries_nr > 0U
* @return base address of the memory region
*/
uint64_t e820_alloc_memory(uint64_t size_arg, uint64_t max_addr)
{
int32_t i;
uint64_t size = round_page_up(size_arg);
uint64_t ret = INVALID_HPA;
struct e820_entry *entry, *new_entry;
for (i = (int32_t)hv_e820_entries_nr - 1; i >= 0; i--) {
entry = &hv_e820[i];
uint64_t start, end, length;
start = round_page_up(entry->baseaddr);
end = round_page_down(entry->baseaddr + entry->length);
length = (end > start) ? (end - start) : 0UL;
if ((entry->type == E820_TYPE_RAM) && (length >= size) && ((start + size) <= max_addr)) {
/* found exact size of e820 entry */
if (length == size) {
entry->type = E820_TYPE_RESERVED;
ret = start;
} else {
/*
* found entry with available memory larger than requested (length > size)
* Reserve memory if
* 1) hv_e820_entries_nr < E820_MAX_ENTRIES
* 2) if end of this "entry" is <= max_addr
* use memory from end of this e820 "entry".
*/
if ((hv_e820_entries_nr < E820_MAX_ENTRIES) && (end <= max_addr)) {
new_entry = &hv_e820[hv_e820_entries_nr];
new_entry->type = E820_TYPE_RESERVED;
new_entry->baseaddr = end - size;
new_entry->length = (entry->baseaddr + entry->length) - new_entry->baseaddr;
/* Shrink the existing entry and total available memory */
entry->length -= new_entry->length;
hv_e820_entries_nr++;
ret = new_entry->baseaddr;
}
}
if (ret != INVALID_HPA) {
break;
}
}
}
if ((ret == INVALID_HPA) || (ret == 0UL)) {
/* current memory allocation algorithm is to find the available address from the highest
* possible address below max_addr. if ret == 0, means all memory is used up and we have to
* put the resource at address 0, this is dangerous.
* Also ret == 0 would make code logic very complicated, since memcpy_s() doesn't support
* address 0 copy.
*/
panic("Requested memory from E820 cannot be reserved!!");
}
return ret;
}
static void insert_e820_entry(uint32_t index, uint64_t addr, uint64_t length, uint64_t type)
{
uint32_t i;
hv_e820_entries_nr++;
ASSERT(hv_e820_entries_nr <= E820_MAX_ENTRIES, "e820 entry overflow");
for (i = hv_e820_entries_nr - 1; i > index; i--) {
hv_e820[i] = hv_e820[i-1];
}
hv_e820[index].baseaddr = addr;
hv_e820[index].length = length;
hv_e820[index].type = type;
}
static uint64_t e820_alloc_region(uint64_t addr, uint64_t size)
{
uint32_t i;
uint64_t entry_start;
uint64_t entry_end;
uint64_t start_pa = round_page_down(addr);
uint64_t end_pa = round_page_up(addr + size);
struct e820_entry *entry;
for (i = 0U; i < hv_e820_entries_nr; i++) {
entry = &hv_e820[i];
entry_start = entry->baseaddr;
entry_end = entry->baseaddr + entry->length;
/* No need handle in these cases*/
if ((entry->type != E820_TYPE_RAM) || (entry_end <= start_pa) || (entry_start >= end_pa)) {
continue;
}
if ((entry_start <= start_pa) && (entry_end >= end_pa)) {
entry->length = start_pa - entry_start;
/*
* .......|start_pa... ....................End_pa|.....
* |entry_start..............................entry_end|
*/
if (end_pa < entry_end) {
insert_e820_entry(i + 1, end_pa, entry_end - end_pa, E820_TYPE_RAM);
break;
}
} else {
pr_err("This region not in one entry!");
}
}
return addr;
}
static void init_e820_from_efi_mmap(void)
{
uint32_t i, e820_idx = 0U;
const struct efi_memory_desc *efi_mmap_entry = get_efi_mmap_entry();
for (i = 0U; i < get_efi_mmap_entries_count(); i++) {
if (e820_idx >= E820_MAX_ENTRIES) {
pr_err("Too many efi memmap entries !");
break;
}
hv_e820[e820_idx].baseaddr = efi_mmap_entry[i].phys_addr;
hv_e820[e820_idx].length = efi_mmap_entry[i].num_pages * PAGE_SIZE;
/* The EFI BOOT Service releated regions need to be set to reserved and avoid being touched by
* hypervisor, because at least below software modules rely on them:
* 1. EFI ESRT(The EFI System Resource Table) which used for UEFI firmware upgrade;
* 2. Image resource in ACPI BGRT(Boottime Graphics Resource Table) which used for boot time logo;
*/
switch (efi_mmap_entry[i].type) {
case EFI_LOADER_CODE:
case EFI_LOADER_DATA:
case EFI_CONVENTIONAL_MEMORY:
if ((efi_mmap_entry[i].attribute & EFI_MEMORY_WB) != 0UL) {
hv_e820[e820_idx].type = E820_TYPE_RAM;
} else {
hv_e820[e820_idx].type = E820_TYPE_RESERVED;
}
break;
case EFI_UNUSABLE_MEMORY:
hv_e820[e820_idx].type = E820_TYPE_UNUSABLE;
break;
case EFI_ACPI_RECLAIM_MEMORY:
hv_e820[e820_idx].type = E820_TYPE_ACPI_RECLAIM;
break;
case EFI_ACPI_MEMORY_NVS:
hv_e820[e820_idx].type = E820_TYPE_ACPI_NVS;
break;
/* case EFI_RESERVED_MEMORYTYPE:
* case EFI_BOOT_SERVICES_CODE:
* case EFI_BOOT_SERVICES_DATA:
* case EFI_RUNTIME_SERVICES_CODE:
* case EFI_RUNTIME_SERVICES_DATA:
* case EFI_MEMORYMAPPED_IO:
* case EFI_MEMORYMAPPED_IOPORTSPACE:
* case EFI_PALCODE:
* case EFI_PERSISTENT_MEMORY:
*/
default:
hv_e820[e820_idx].type = E820_TYPE_RESERVED;
break;
}
/* Given the efi memmap has been sorted, the hv_e820[] is also sorted.
* Then the algorithm is very simple, just merge with previous mmap entry
* if type is same and base addr is continuous.
*/
if ((e820_idx > 0U) && (hv_e820[e820_idx].type == hv_e820[e820_idx - 1U].type)
&& (hv_e820[e820_idx].baseaddr ==
(hv_e820[e820_idx - 1U].baseaddr
+ hv_e820[e820_idx - 1U].length))) {
hv_e820[e820_idx - 1U].length += hv_e820[e820_idx].length;
} else {
dev_dbg(DBG_LEVEL_E820, "efi mmap hv_e820[%d]: type: 0x%x Base: 0x%016lx length: 0x%016lx",
e820_idx, hv_e820[e820_idx].type, hv_e820[e820_idx].baseaddr, hv_e820[e820_idx].length);
e820_idx ++;
}
}
hv_e820_entries_nr = e820_idx;
}
/* HV read multiboot header to get e820 entries info and calc total RAM info */
static void init_e820_from_mmap(struct acrn_boot_info *abi)
{
uint32_t i;
struct abi_mmap *mmap = abi->mmap_entry;
hv_e820_entries_nr = abi->mmap_entries;
dev_dbg(DBG_LEVEL_E820, "mmap addr 0x%x entries %d\n",
abi->mmap_entry, hv_e820_entries_nr);
for (i = 0U; i < hv_e820_entries_nr; i++) {
hv_e820[i].baseaddr = mmap[i].baseaddr;
hv_e820[i].length = mmap[i].length;
hv_e820[i].type = mmap[i].type;
dev_dbg(DBG_LEVEL_E820, "mmap hv_e820[%d]: type: 0x%x Base: 0x%016lx length: 0x%016lx", i,
mmap[i].type, mmap[i].baseaddr, mmap[i].length);
}
}
static void calculate_e820_ram_size(void)
{
uint32_t i;
for(i = 0; i < hv_e820_entries_nr; i++){
dev_dbg(DBG_LEVEL_E820, "hv_e820[%d]:type: 0x%x Base: 0x%016lx length: 0x%016lx", i,
hv_e820[i].type, hv_e820[i].baseaddr, hv_e820[i].length);
if (hv_e820[i].type == E820_TYPE_RAM) {
hv_e820_ram_size += hv_e820[i].baseaddr + hv_e820[i].length;
}
}
dev_dbg(DBG_LEVEL_E820, "ram size: 0x%016lx ",hv_e820_ram_size);
}
static void alloc_mods_memory(void)
{
uint32_t i;
int64_t mod_start = 0UL;
struct acrn_boot_info *abi = get_acrn_boot_info();
for (i = 0; i < abi->mods_count; i++) {
mod_start = hva2hpa(abi->mods[i].start);
e820_alloc_region(mod_start, abi->mods[i].size);
}
}
void init_e820(void)
{
struct acrn_boot_info *abi = get_acrn_boot_info();
if (boot_from_uefi(abi)) {
init_efi_mmap_entries(&abi->uefi_info);
init_e820_from_efi_mmap();
} else {
init_e820_from_mmap(abi);
}
calculate_e820_ram_size();
/* reserve multiboot modules memory */
alloc_mods_memory();
}
uint64_t get_e820_ram_size(void)
{
return hv_e820_ram_size;
}
uint32_t get_e820_entries_count(void)
{
return hv_e820_entries_nr;
}
const struct e820_entry *get_e820_entry(void)
{
return hv_e820;
}