acrn-hypervisor/hypervisor/arch/x86/security.c

275 lines
7.3 KiB
C

/*
* Copyright (C) 2018-2022 Intel Corporation.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <types.h>
#include <asm/msr.h>
#include <asm/cpufeatures.h>
#include <asm/cpu.h>
#include <asm/per_cpu.h>
#include <asm/cpu_caps.h>
#include <asm/security.h>
#include <logmsg.h>
static bool skip_l1dfl_vmentry;
static bool cpu_md_clear;
static int32_t ibrs_type;
static void detect_ibrs(void)
{
/* For speculation defence.
* The default way is to set IBRS at vmexit and then do IBPB at vcpu
* context switch(ibrs_type == IBRS_RAW).
* Now provide an optimized way (ibrs_type == IBRS_OPT) which set
* STIBP and do IBPB at vmexit,since having STIBP always set has less
* impact than having IBRS always set. Also since IBPB is already done
* at vmexit, it is no necessary to do so at vcpu context switch then.
*/
ibrs_type = IBRS_NONE;
/* Currently for APL, if we enabled retpoline, then IBRS should not
* take effect
* TODO: add IA32_ARCH_CAPABILITIES[1] check, if this bit is set, IBRS
* should be set all the time instead of relying on retpoline
*/
#ifndef CONFIG_RETPOLINE
if (pcpu_has_cap(X86_FEATURE_IBRS_IBPB)) {
ibrs_type = IBRS_RAW;
if (pcpu_has_cap(X86_FEATURE_STIBP)) {
ibrs_type = IBRS_OPT;
}
}
#endif
}
#ifdef CONFIG_RETPOLINE
/* For platform that supports RRSBA (Restricted Return Stack Buffer Alternate),
* using retpoline may not be sufficient to guard against branch history injection (BHI)
* or Intra-mode branch target injection (IMBTI). RRSBA must be disabled to
* prevent CPUs from using alternate predictors for RETs.
*
* Quoting Intel CVE-2022-0001/CVE-2022-0002 documentation:
*
* Where software is using retpoline as a mitigation for BHI or intra-mode BTI,
* and the processor both enumerates RRSBA and enumerates RRSBA_DIS controls,
* it should disable this behavior.
* ...
* Software using retpoline as a mitigation for BHI or intra-mode BTI should use
* these new indirect predictor controls to disable alternate predictors for RETs.
*
* See: https://www.intel.com/content/www/us/en/developer/articles/technical/
* software-security-guidance/technical-documentation/branch-history-injection.html
*/
void disable_rrsba(void) {
uint64_t v, x86_arch_caps;
bool rrsba_behavior = false;
if (pcpu_has_cap(X86_FEATURE_ARCH_CAP)) {
x86_arch_caps = msr_read(MSR_IA32_ARCH_CAPABILITIES);
rrsba_behavior = ((x86_arch_caps & IA32_ARCH_CAP_RESTRICTED_RSBA) != 0UL);
}
if (rrsba_behavior && pcpu_has_cap(X86_FEATURE_RRSBA_CTRL)) {
v = msr_read(MSR_IA32_SPEC_CTRL);
/* Setting SPEC_RRSBA_DIS_S disables RRSBA behavior for CPL0/1/2 */
v |= SPEC_RRSBA_DIS_S;
msr_write(MSR_IA32_SPEC_CTRL, v);
}
}
#endif
int32_t get_ibrs_type(void)
{
return ibrs_type;
}
bool check_cpu_security_cap(void)
{
bool ret = true;
bool mds_no = false;
bool ssb_no = false;
uint64_t x86_arch_capabilities;
detect_ibrs();
if (pcpu_has_cap(X86_FEATURE_ARCH_CAP)) {
x86_arch_capabilities = msr_read(MSR_IA32_ARCH_CAPABILITIES);
skip_l1dfl_vmentry = ((x86_arch_capabilities
& IA32_ARCH_CAP_SKIP_L1DFL_VMENTRY) != 0UL);
mds_no = ((x86_arch_capabilities & IA32_ARCH_CAP_MDS_NO) != 0UL);
/* SSB_NO: Processor is not susceptble to Speculative Store Bypass(SSB) */
ssb_no = ((x86_arch_capabilities & IA32_ARCH_CAP_SSB_NO) != 0UL);
}
if ((!pcpu_has_cap(X86_FEATURE_L1D_FLUSH)) && (!skip_l1dfl_vmentry)) {
/* Processor is affected by L1TF CPU vulnerability,
* but no L1D_FLUSH command support.
*/
ret = false;
}
if ((!pcpu_has_cap(X86_FEATURE_SSBD)) && (!ssb_no)) {
/* Processor is susceptble to Speculative Store Bypass(SSB),
* but no support for Speculative Store Bypass Disable(SSBD).
*/
ret = false;
}
if ((!pcpu_has_cap(X86_FEATURE_IBRS_IBPB)) && (!pcpu_has_cap(X86_FEATURE_STIBP))) {
ret = false;
}
if (!mds_no) { /* Processor is affected by MDS vulnerability.*/
if (pcpu_has_cap(X86_FEATURE_MDS_CLEAR)) {
cpu_md_clear = true;
#ifdef CONFIG_L1D_FLUSH_VMENTRY_ENABLED
if (!skip_l1dfl_vmentry) {
/* L1D cache flush will also overwrite CPU internal buffers,
* additional MDS buffers clear operation is not required.
*/
cpu_md_clear = false;
}
#endif
} else {
/* Processor is affected by MDS but no mitigation software
* interface is enumerated, CPU microcode need to be udpated.
*/
ret = false;
}
}
return ret;
}
void cpu_l1d_flush(void)
{
/*
* 'skip_l1dfl_vmentry' will be true on platform that
* is not affected by L1TF.
*
*/
if (!skip_l1dfl_vmentry) {
if (pcpu_has_cap(X86_FEATURE_L1D_FLUSH)) {
msr_write(MSR_IA32_FLUSH_CMD, IA32_L1D_FLUSH);
}
}
}
/*
* VERW instruction (with microcode update) will overwrite
* CPU internal buffers.
*/
static inline void verw_buffer_overwriting(void)
{
uint16_t ds = HOST_GDT_RING0_DATA_SEL;
asm volatile ("verw %[ds]" : : [ds] "m" (ds) : "cc");
}
/*
* On processors that enumerate MD_CLEAR:CPUID.(EAX=7H,ECX=0):EDX[MD_CLEAR=10],
* the VERW instruction or L1D_FLUSH command should be used to cause the
* processor to overwrite buffer values that are affected by MDS
* (Microarchitectural Data Sampling) vulnerabilities.
*
* The VERW instruction and L1D_FLUSH command will overwrite below buffer values:
* - Store buffer value for the current logical processor on processors affected
* by MSBDS (Microarchitectural Store Buffer Data Sampling).
* - Fill buffer for all logical processors on the physical core for processors
* affected by MFBDS (Microarchitectural Fill Buffer Data Sampling).
* - Load port for all logical processors on the physical core for processors
* affected by MLPDS(Microarchitectural Load Port Data Sampling).
*
* If processor is affected by L1TF vulnerability and the mitigation is enabled,
* L1D_FLUSH will overwrite internal buffers on processors affected by MDS, no
* additional buffer overwriting is required before VM entry. For other cases,
* VERW instruction is used to overwrite buffer values for processors affected
* by MDS.
*/
void cpu_internal_buffers_clear(void)
{
if (cpu_md_clear) {
verw_buffer_overwriting();
}
}
uint64_t get_random_value(void)
{
uint64_t random;
asm volatile ("1: rdrand %%rax\n"
"jnc 1b\n"
"mov %%rax, %0\n"
: "=r"(random)
:
:"%rax");
return random;
}
#ifdef STACK_PROTECTOR
void set_fs_base(void)
{
struct stack_canary *psc = &get_cpu_var(stk_canary);
psc->canary = get_random_value();
msr_write(MSR_IA32_FS_BASE, (uint64_t)psc);
}
#endif
#ifdef CONFIG_MCE_ON_PSC_WORKAROUND_DISABLED
bool is_ept_force_4k_ipage(void)
{
return false;
}
#else
bool is_ept_force_4k_ipage(void)
{
bool force_4k_ipage = true;
const struct cpuinfo_x86 *info = get_pcpu_info();
uint64_t x86_arch_capabilities;
if (info->displayfamily == 0x6U) {
switch (info->displaymodel) {
case 0x26U:
case 0x27U:
case 0x35U:
case 0x36U:
case 0x37U:
case 0x86U:
case 0x1CU:
case 0x4AU:
case 0x4CU:
case 0x4DU:
case 0x5AU:
case 0x5CU:
case 0x5DU:
case 0x5FU:
case 0x6EU:
case 0x7AU:
/* Atom processor is not affected by the issue
* "Machine Check Error on Page Size Change"
*/
force_4k_ipage = false;
break;
default:
force_4k_ipage = true;
break;
}
}
if (pcpu_has_cap(X86_FEATURE_ARCH_CAP)) {
x86_arch_capabilities = msr_read(MSR_IA32_ARCH_CAPABILITIES);
if ((x86_arch_capabilities & IA32_ARCH_CAP_IF_PSCHANGE_MC_NO) != 0UL) {
force_4k_ipage = false;
}
}
return force_4k_ipage;
}
#endif